Yao-Gen Shen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4802781/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	XPS study for reactively sputtered titanium nitride thin films deposited under different substrate bias. Physica B: Condensed Matter, 2004, 352, 118-126.	1.3	126
2	Nanocomposite Ti–Si–N films deposited by reactive unbalanced magnetron sputtering at room temperature. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2004, 106, 163-171.	1.7	91
3	Effect of deposition conditions on mechanical stresses and microstructure of sputter-deposited molybdenum and reactively sputter-deposited molybdenum nitride films. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2003, 359, 158-167.	2.6	90
4	Recent advances on understanding the origin of superhardness in nanocomposite coatings: A critical review. Journal of Materials Science, 2006, 41, 937-950.	1.7	90
5	Superhard nanocomposite Ti–Al–Si–N films deposited by reactive unbalanced magnetron sputtering. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2006, 135, 1-9.	1.7	84
6	Deformation behavior and mechanical properties of polycrystalline and single crystal alumina during nanoindentation. Scripta Materialia, 2011, 65, 127-130.	2.6	81
7	Hardening mechanisms of nanocrystalline Ti–Al–N solid solution films. Thin Solid Films, 2004, 468, 161-166.	0.8	76
8	High performance W–AlN cermet solar coatings designed by modelling calculations and deposited by DC magnetron sputtering. Solar Energy Materials and Solar Cells, 2004, 81, 25-37.	3.0	76
9	Structural and mechanical properties of titanium–aluminium–nitride films deposited by reactive close-field unbalanced magnetron sputtering. Surface and Coatings Technology, 2004, 185, 245-253.	2.2	76
10	Nanoscale elastic–plastic deformation and stress distributions of the C plane of sapphire single crystal during nanoindentation. Journal of the European Ceramic Society, 2011, 31, 1865-1871.	2.8	71
11	Atomic force microscopy study of surface roughening of sputter-deposited TiN thin films. Journal of Applied Physics, 2002, 92, 3559-3563.	1.1	63
12	XPS, AFM and nanoindentation studies of Ti1â^'xAlxN films synthesized by reactive unbalanced magnetron sputtering. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2003, 100, 204-213.	1.7	61
13	Studies of surface composition and structure of Cu3Pt(111) by low energy alkali ion scattering. Surface Science, 1995, 328, 21-31.	0.8	60
14	Nano-structured CrN/CNx multilayer films deposited by magnetron sputtering. Composites Science and Technology, 2008, 68, 2922-2929.	3.8	56
15	A comparative study of mechanical and microstructural characteristics of aluminium and titanium undergoing ultrasonic assisted compression testing. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2017, 682, 376-388.	2.6	55
16	Microstructure, surface morphology, and mechanical properties of nanocrystalline TiN/amorphous Si3N4 composite films synthesized by ion beam assisted deposition. Journal of Applied Physics, 2004, 95, 1460-1467.	1.1	54
17	X-Ray photoelectron spectroscopy characterization of reactively sputtered Ti–B–N thin films. Surface and Coatings Technology, 2004, 187, 98-105.	2.2	53
18	n-type conductivity and phase transition in ultrananocrystalline diamond films by oxygen ion implantation and annealing. Journal of Applied Physics, 2011, 109, 053524.	1.1	53

#	Article	IF	CITATIONS
19	Microstructure, mechanical properties, and oxidation resistance of nanocomposite Ti–Si–N coatings. Applied Surface Science, 2006, 252, 6141-6153.	3.1	52
20	Substrate bias effects on mechanical and tribological properties of substitutional solid solution (Ti,) Tj ETQq0 Materials for Advanced Technology, 2006, 131, 62-71.	0 0 rgBT /Ov 1.7	verlock 10 Tf 5 52
21	Mechanical and tribological properties of titanium–aluminium–nitride films deposited by reactive close-field unbalanced magnetron sputtering. Wear, 2004, 257, 1030-1040.	1.5	51
22	Nanoindentation-induced elastic–plastic transition and size effect inα-Al2O3(0001). Philosophical Magazine Letters, 2007, 87, 409-415.	0.5	49
23	Influence of microstructures on mechanical behaviours of SiC nanowires: a molecular dynamics study. Nanotechnology, 2012, 23, 025703.	1.3	47
24	Structural properties and nitrogen-loss characteristics in sputtered tungsten nitride films. Thin Solid Films, 2000, 372, 257-264.	0.8	44
25	Phosphorus ion implantation and annealing induced n-type conductivity and microstructure evolution in ultrananocrystalline diamond films. Applied Physics Letters, 2011, 99, 131902.	1.5	44
26	The role of the electronic structure in charge exchange between low energy ions and surfaces. Surface Science, 1988, 197, 277-294.	0.8	41
27	Effects of amorphous matrix on the grain growth kinetics in two-phase nanostructured films: a Monte Carlo study. Acta Materialia, 2004, 52, 729-736.	3.8	39
28	Nanoindentation Study of Popâ€in Phenomenon Characteristics and Mechanical Properties of Sapphire (102) Crystal. Journal of the American Ceramic Society, 2012, 95, 3605-3612.	1.9	36
29	Mechanical and tribological properties of nanostructured TiN/TiBN multilayer films. Wear, 2008, 265, 516-524.	1.5	32
30	The oxidization behavior and mechanical properties of ultrananocrystalline diamond films at high temperature annealing. Applied Surface Science, 2014, 317, 11-18.	3.1	30
31	Phase stability, electronic structures, and superconductivity properties of the BaPb _{1<i>â^'x</i>} Bi _{<i>x</i>} O ₃ and Ba _{1<i>â^'x</i>} K _{<i>x</i>} BiO ₃ perovskites. Journal of the American Ceramic Society, 2017, 100, 1221-1230.	1.9	29
32	Thin film growth of Pt on Cu(111): a LEIS study. Surface Science, 1996, 357-358, 921-925.	0.8	28
33	Synthesis and characterization of CNx/TiN multilayers on Si(100) substrates. Surface and Coatings Technology, 2005, 200, 2293-2300.	2.2	27
34	Compositional phase diagram and microscopic mechanism of Ba _{1â^'x} Ca _x Zr _y Ti _{1â^'y} O ₃ relaxor ferroelectrics. Physical Chemistry Chemical Physics, 2017, 19, 22190-22196.	1.3	27
35	Improvement of high-speed turning performance of Ti–Al–N coatings by using a pretreatment of high-energy ion implantation. Surface and Coatings Technology, 2005, 198, 414-419.	2.2	26
36	A bifurcation-based decohesion model for simulating the transition from localization to decohesion with the MPM. Zeitschrift Fur Angewandte Mathematik Und Physik, 2005, 56, 908-930.	0.7	26

#	Article	IF	CITATIONS
37	First-principles calculations for the elastic properties of nanostructured superhard TiNâ^•SixNy superlattices. Applied Physics Letters, 2007, 91, 081916.	1.5	26
38	Mechanical and tribological properties of multicomponent Ti–B–C–N thin films with varied C contents. Surface and Coatings Technology, 2010, 204, 1528-1534.	2.2	26
39	Monte Carlo simulation of nanocrystalline TiN/amorphous SiNx composite films. Journal of Applied Physics, 2004, 95, 758-760.	1.1	25
40	Optimum information in crackling noise. Physical Review E, 2005, 72, 027101.	0.8	25
41	Effects of B content and wear parameters on dry sliding wear behaviors of nanocomposite Ti–B–N thin films. Wear, 2007, 262, 1372-1379.	1.5	25
42	Structure, Phase Transition, and Electronic Properties of <scp><scp>K</scp></scp> _{1<i>â°x</i>} <scp><scp>Na</scp></scp> _{<i>x</i>} <scp><scp> Solid Solutions from Firstâ€Principles Theory. Journal of the American Ceramic Society, 2014, 97, 4019-4023.</scp></scp>	NbO <td>o>≺/scp>≺su 25</td>	o>≺/scp>≺su 25
43	Effect of heat treatment on deformation and mechanical properties of 8 mol% yttria-stabilized zirconia by Berkovich nanoindentation. Applied Surface Science, 2015, 338, 92-98.	3.1	25
44	Structural studies of amorphous and crystallized tungsten nitride thin films by EFED, XRD and TEM. Applied Surface Science, 2000, 167, 59-68.	3.1	24
45	Characterization of sputter deposited W–Si–N coatings based on α-W structure. Materials Letters, 2005, 59, 618-623.	1.3	23
46	Investigation of nanostructure evolution and twinning of nanocrystallites in Ti–Bx–Ny nanocomposite thin films deposited by magnetron sputtering at low temperature by means of HRTEM and Monte Carlo simulations. Acta Materialia, 2006, 54, 2897-2905.	3.8	23
47	Oscillating growth of surface roughness in multilayer films. Applied Physics Letters, 2004, 84, 5121-5123.	1.5	22
48	Structure, stress and hardness of sputter deposited nanocomposite W-Si-N coatings. Surface and Coatings Technology, 2005, 200, 2525-2530.	2.2	22
49	SiV center photoluminescence induced by C=O termination in nanocrystalline diamond and graphite loops hybridized films. Journal of Applied Physics, 2016, 120, .	1.1	22
50	Phase transformations of nano-sized cubic boron nitride to white graphene and white graphite. Applied Physics Letters, 2014, 104, 093104.	1.5	21
51	Sol–gel preparation and properties of Ag–TiO ₂ films on surface roughened Ti–6Al–4V alloy. Materials Science and Technology, 2015, 31, 501-505.	0.8	21
52	CO adsorption on Cu 3 Pt(111): a LEIS study. Surface Science, 1995, 331-333, 746-752.	0.8	20
53	Sol–gel derived Ag-containing TiO2 films on surface roughened biomedical NiTi alloy. Ceramics International, 2014, 40, 12423-12429.	2.3	19
54	Neutralisation in low energy ion scattering. Nuclear Instruments & Methods in Physics Research B, 1988, 33, 446-450.	0.6	18

#	Article	IF	CITATIONS
55	Dissociative scattering of molecular BF+ and BF+2 ions from Au surfaces. Nuclear Instruments & Methods in Physics Research B, 1993, 73, 35-40.	0.6	18
56	Au-segregated dealloying and Pd-induced clock reconstructing of Cu(001). Journal of Physics Condensed Matter, 1996, 8, 4903-4918.	0.7	18
57	ZrÂZrO2cermet solar coatings designed by modelling calculations and deposited by dc magnetron sputtering. Journal Physics D: Applied Physics, 2003, 36, 723-729.	1.3	18
58	Behavior of Ti0.5Al0.5N thin film in nanoscale deformation with different loading rates. Thin Solid Films, 2008, 516, 7641-7647.	0.8	18
59	Influence of deposition conditions on mechanical and tribological properties of nanostructured TiN/CNx multilayer films. Surface and Coatings Technology, 2009, 203, 967-975.	2.2	18
60	<i>Ab initio</i> atomistic thermodynamics study on the oxidation mechanism of binary and ternary alloy surfaces. Journal of Chemical Physics, 2015, 142, 064705.	1.2	18
61	Structure and properties of stacking faulted A15 tungsten thin films. , 2001, 36, 93-98.		17
62	Temperature effect on surface roughening of thin films. Surface Science, 2005, 595, 20-29.	0.8	17
63	Effects of B content on microstructure and mechanical properties of nanocomposite Ti–B[sub x]–N[sub y] thin films. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 2005, 23, 449.	1.6	17
64	Nanostructure transition: From solid solution Ti(N,C) to nanocomposite nc-Ti(N,C)â^•a-(C,CNx). Applied Physics Letters, 2007, 90, 221913.	1.5	17
65	Composition―and Pressureâ€Induced Relaxor Ferroelectrics: Firstâ€Principles Calculations and Landauâ€Devonshire Theory. Journal of the American Ceramic Society, 2016, 99, 3336-3342.	1.9	17
66	A search for clock reconstruction in fcc (001) surfaces induced by monolayer metal films: , and Pd/Pt/Cu(001). Solid State Communications, 1996, 100, 21-26.	0.9	16
67	Surface evolution and dynamic scaling of sputter-deposited Al thin films on Ti(1 0 0) substrates. Applied Surface Science, 2004, 226, 371-377.	3.1	16
68	Surface growth and anomalous scaling of sputter-deposited Al films. Physica B: Condensed Matter, 2008, 403, 2306-2311.	1.3	16
69	Effect of nitrogen content on phase configuration, nanostructure and mechanical behaviors in magnetron sputtered SiCxNy thin films. Applied Surface Science, 2010, 256, 1955-1960.	3.1	16
70	Deformation-induced phase transformation in 4H–SiC nanopillars. Acta Materialia, 2014, 80, 392-399.	3.8	16
71	Structural properties of sputter-deposited CNx/TiN multilayer films. Thin Solid Films, 2005, 479, 31-37.	0.8	15
72	Initial growth of ultrathin Pd films on Cu(001). Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1995, 13, 1443-1447.	0.9	14

#	Article	IF	CITATIONS
73	Formation of Ni(100)î—,Al surface alloy. Surface Science, 1996, 357-358, 202-207.	0.8	14
74	Reactively sputter-deposited Mo–Ox–Ny thin films. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2002, 95, 222-229.	1.7	14
75	Effects of nitrogen content on nanostructure evolution, mechanical behaviors and thermal stability in Ti–B–N thin films. Surface and Coatings Technology, 2006, 201, 1228-1235.	2.2	14
76	Effects of nitrogen content on microstructure and oxidation behaviors of Ti–B–N nanocomposite thin films. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2006, 24, 340-349.	0.9	14
77	Structure and hardness of unbalanced magnetron sputtered TiBxNy thin films deposited at 500°C. Surface and Coatings Technology, 2007, 201, 7368-7374.	2.2	14
78	Structural and mechanical properties of titanium and titanium diboride monolayers and Ti/TiB2 multilayers. Thin Solid Films, 2008, 516, 5313-5317.	0.8	14
79	Effects of oxygen vacancies on polarization stability of barium titanate. Science China: Physics, Mechanics and Astronomy, 2016, 59, 1.	2.0	14
80	Roughening kinetics of reactively sputter-deposited Ti-Al-N films on Si(100). Philosophical Magazine Letters, 2003, 83, 627-634.	0.5	13
81	Solâ€gel preparation and properties of Agâ€containing bioactive glass films on titanium. International Journal of Applied Ceramic Technology, 2017, 14, 1117-1124.	1.1	13
82	The growth of thin Cu films on an O-precovered Ru(0001) surface studied by low energy ion beams. Thin Solid Films, 1995, 263, 72-78.	0.8	12
83	Roughening kinetics of thin films in the presence of both stress and Ehrlich–Schwobel barrier. Applied Physics Letters, 2003, 83, 5404-5406.	1.5	12
84	Dependence of phase composition on dry sliding behaviour in nanocomposite TiB _x N _y thin films. Materials Science and Technology, 2007, 23, 1243-1248.	0.8	12
85	Stress-induced surface damages in Ti–Si–N films grown by magnetron sputtering. Thin Solid Films, 2008, 516, 7609-7614.	0.8	12
86	Linear surface smoothening of (Ti0.48Al0.52)N thin films grown on rough substrates. Applied Physics Letters, 2005, 86, 251908.	1.5	11
87	Nanostructured two-phase nc-TiN/a-(TiB2, BN) nanocomposite thin films. Applied Surface Science, 2006, 253, 1631-1638.	3.1	11
88	Effect of N content on phase configuration, nanostructure and mechanical behaviors in Ti–Cx–Ny thin films. Applied Surface Science, 2009, 255, 7858-7863.	3.1	11
89	Structural, mechanical and tribological properties of nanostructured CNx/TiN multilayers. Tribology International, 2009, 42, 798-806.	3.0	11
90	Oxygen structure on Ni(100) using low energy Li+, negative recoil and H+ ions. Nuclear Instruments & Methods in Physics Research B, 1992, 66, 441-452.	0.6	10

#	Article	IF	CITATIONS
91	Surface composition and ordering of Cu3Pt(111). Solid State Communications, 1995, 96, 557-562.	0.9	10
92	The role of interfacial strain in the surface p4g reconstruction: a comparison between and. Journal of Physics Condensed Matter, 1997, 9, 8345-8358.	0.7	10
93	Surface morphology of sputter deposited W–Si–N composite coatings characterized by atomic force microscopy. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2005, 123, 158-162.	1.7	10
94	Effect of B content on nanostructure evolution and twinning deformation of nanocrystallite in nc-Ti(N,B)â^•a-(TiB2,BN) nanocomposite thin films. Applied Physics Letters, 2005, 87, 151902.	1.5	10
95	Theoretical analysis of Hertzian contact fracture: Ring crack. Engineering Fracture Mechanics, 2008, 75, 4247-4256.	2.0	10
96	Elasto-plastic characteristics and mechanical properties of as-sprayed 8mol% yttria-stabilized zirconia coating under nano-scales measured by nanoindentation. Applied Surface Science, 2014, 309, 271-277.	3.1	10
97	Structural study of the growth of thin Cu films on Ru(0001) by lowâ€energy alkali ion scattering. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1995, 13, 1478-1483.	0.9	9
98	Microstructure evolution and grain growth of nanocomposite TiN–TiB2 films: experiment and simulation. Surface and Coatings Technology, 2006, 200, 6474-6478.	2.2	9
99	Surface growth of (Ti,Al)N thin films on smooth and rough substrates. Thin Solid Films, 2006, 496, 326-332.	0.8	9
100	Phase configuration, nanostructure evolution, and mechanical properties of unbalanced magnetron-sputtered Ti-Cx-Ny thin films. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2007, 25, 1539-1546.	0.9	9
101	Nanostructure evolution and properties of two-phase nc-Ti(C, N)/a-(C, CN <i>_x</i>) nanocomposites by high-resolution transmission electron microscopy, x-ray photoelectron spectroscopy, and Raman spectroscopy. Journal of Materials Research, 2007, 22, 2460-2469.	1.2	9
102	Understanding large plastic deformation of SiC nanowires at room temperature. Europhysics Letters, 2011, 95, 63003.	0.7	9
103	Self-healing in fractured GaAs nanowires. Acta Materialia, 2012, 60, 5593-5600.	3.8	9
104	The effect of interface adhesion on buckling and cracking of hard thin films. Applied Physics Letters, 2014, 105, .	1.5	9
105	Materials can be strengthened by nanoscale stacking faults. Europhysics Letters, 2015, 110, 36002.	0.7	9
106	Nanoscale elasticâ€plastic deformation and mechanical properties of 3Câ€6iC thin film using nanoindentation. International Journal of Applied Ceramic Technology, 2019, 16, 706-717.	1.1	9
107	Oxygen adsorption and oxide growth on Ni3Al single crystal surfaces. Nuclear Instruments & Methods in Physics Research B, 1992, 67, 350-354.	0.6	8
108	The scattering of low energy hydrogen ions from surfaces. Nuclear Instruments & Methods in Physics Research B, 1993, 78, 56-62.	0.6	8

#	Article	IF	CITATIONS
109	Thermal stability of sputter deposited nanocrystalline W2N/amorphous Si3N4 coatings. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2006, 24, 2094-2099.	0.9	8
110	Effects of Al content on grain growth of solid solution (Ti,Al)N films. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2006, 24, 174-177.	0.9	8
111	Mechanical and tribological characterisation of nanostructured Ti/TiB ₂ multilayer films. Surface Engineering, 2008, 24, 402-409.	1.1	8
112	The structural properties of B–O codoped diamond films. Diamond and Related Materials, 2009, 18, 210-212.	1.8	8
113	Effect of oxidation temperature on microstructure, mechanical behaviors and surface morphology of nanocomposite Ti–Cx–Ny thin films. Applied Surface Science, 2011, 257, 2769-2774.	3.1	8
114	Short-pulse laser formation of monatomic metallic glass in tantalum nanowire. Applied Physics A: Materials Science and Processing, 2017, 123, 1.	1.1	8
115	Crystallization-induced stress in reactively sputter-deposited molybdenum nitride thin films. Philosophical Magazine Letters, 2003, 83, 125-133.	0.5	7
116	Carbon nitride based hard multilayer films prepared by closed field unbalanced magnetron sputtering. Surface Engineering, 2006, 22, 15-25.	1.1	7
117	Effect of the hot electron blast force on ultrafast laser ablation of nickel thin film. Applied Optics, 2015, 54, 1737.	0.9	7
118	Elastic-plastic deformation behavior of sapphire M-plane under static loading using nano-indentation. Ceramics International, 2021, 47, 23528-23538.	2.3	7
119	Refractive Index Controlled Plasmon Tuning of Au Nanoparticles in SiO ₂ -ZrO ₂ Film Matrices. Journal of Nanoscience and Nanotechnology, 2008, 8, 3868-3876.	0.9	6
120	Log-normal nanograin-size distributions in nanostructured composites. Philosophical Magazine Letters, 2008, 88, 829-836.	0.5	6
121	Temporary negative ion formation in interactions of low-energy inert gas ions (He+, Ne+) with Cs-adsorbed Cu(111) surfaces. Surface Science, 1995, 341, 19-28.	0.8	5
122	Combined ion scattering, electron diffraction and work function change study on growth, alloying and initial oxygen adsorption of ultrathin Al films in Pd(001). Journal of Physics Condensed Matter, 1997, 9, 9459-9467.	0.7	5
123	An investigation on the onset of plastic deformation of nanocrystalline solid solution Ti–Al–N films. Engineering Fracture Mechanics, 2008, 75, 4978-4984.	2.0	5
124	Size-dependent brittle-to-ductile transition in GaAs nano-rods. Engineering Fracture Mechanics, 2015, 150, 135-142.	2.0	5
125	Grain growth in nanocomposite Ti–B–N films during deposition: The effect of amorphous phase precipitation. Journal of Materials Research, 2006, 21, 82-87.	1.2	4
126	Mechanisms of amorphous-phase-dependent grain growth in two-phase nanocomposite films: A Monte Carlo analysis. Applied Physics Letters, 2008, 92, 021910.	1.5	4

#	Article	IF	CITATIONS
127	Effect of carbon content on thermal stability of Ti–Cx–Ny thin films. Journal of Materials Research, 2008, 23, 671-678.	1.2	4
128	The roles of grain boundary and interfacial energies in the grain growth of nanocomposite films. Applied Physics Letters, 2009, 94, 093111.	1.5	4
129	The grain refining effect of energy competition and the amorphous phase in nanocomposite materials. Scripta Materialia, 2013, 69, 662-665.	2.6	4
130	Atomic force microscopy study of growth kinetics: Scaling in TiN–TiB2 nanocomposite films on Si(100). Applied Surface Science, 2006, 252, 8091-8095.	3.1	3
131	Determination of Effective Nanoindentation Range for Hard (Ti,Al)N Thin Film. Japanese Journal of Applied Physics, 2006, 45, 6411-6416.	0.8	3
132	Relationship between composition, bonding constitution and microstructure in unbalanced magnetron sputtered Ti–B–N thin films. Surface Engineering, 2007, 23, 307-312.	1.1	3
133	Nanostructural C-Al-N thin films studied by x-ray photoelectron spectroscopy, Raman and high-resolution transmission electron microscopy. Journal of Materials Research, 2009, 24, 3321-3330.	1.2	3
134	Effect of nitrogen content on nanostructure and mechanical properties of TiC _x N _y thin films. Surface Engineering, 2011, 27, 169-173.	1.1	3
135	Self-healing of fractured one-dimensional brittle nanostructures. Europhysics Letters, 2012, 98, 16010.	0.7	3
136	Electron relaxation effect on the sub-100-fs laser interaction with gold thin film. Optics Letters, 2013, 38, 2397.	1.7	3
137	Temperature-dependent morphology evolution of the submonolayer clusters grown on fcc metal (110) surfaces. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2005, 23, 177-183.	0.9	2
138	Effect of B content on thermal stability of nanocomposite Ti–B–N thin films. Materials Science and Technology, 2006, 22, 1255-1260.	0.8	2
139	Al-induced fullerene-like nanostructures in C–Al–N thin films. Materials Letters, 2009, 63, 2479-2482.	1.3	2
140	The grain size distribution in nanocomposite films. Solid State Communications, 2009, 149, 903-907.	0.9	2
141	Phase configuration, nanostructure, and mechanical behaviors in Ti-B-C-N thin films. Journal of Materials Research, 2009, 24, 2520-2527.	1.2	2
142	Reduction of the effect of electron relaxation behavior on the femtosecond laser-induced response of copper thin film by ballistic energy transfer. International Journal of Thermal Sciences, 2015, 93, 21-28.	2.6	2
143	Interface structure of sputter deposited CNx film on silicon substrate. Materials Letters, 2008, 62, 2685-2687.	1.3	1
144	Effect of Thermal Annealing on Nanostructure and Shape Transition in SiC–C Nanocomposites. Nanoscience and Nanotechnology Letters, 2012, 4, 435-440.	0.4	1

#	Article	IF	CITATIONS
145	Sputtering of Cu thin films on Ru(0001) by Ne+ ion bombardment. Nuclear Instruments & Methods in Physics Research B, 1995, 106, 55-59.	0.6	0
146	Crystallization-induced stress in tungsten nitride thin films. Journal of Materials Science Letters, 2000, 19, 1941-1943.	0.5	0
147	Role of island corner rounding in the morphology transition of the submonolayers grown on metal (1 1 0) surfaces. Applied Surface Science, 2004, 233, 197-203.	3.1	0
148	The Origin of Superhardness in Nanocomposite Coatings: Analysis of Nanoindentation and Scratch Tests. , 2007, , 39-49.		0
149	Surface smoothing of sputter deposited amorphous CNx films by silicon addition. Journal of Non-Crystalline Solids, 2008, 354, 3235-3240.	1.5	0
150	Finite Element Modelling of Stress-Induced Fracture in Ti-Si-N Films. Applied Mechanics and Materials, 0, 553, 10-15.	0.2	0
151	Enhancement of thermal stability by microstructural refinement in nanocomposite materials. Scripta Materialia, 2014, 87, 33-36.	2.6	0
152	Effect of hot electron blast force on ultrafast laser ablation of nickel thin film: erratum. Applied Optics, 2015, 54, 3216.	2.1	0