Yue Hou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4802753/publications.pdf

Version: 2024-02-01

304602 395590 1,332 67 22 33 citations h-index g-index papers 68 68 68 1600 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Characteristic biflavonoids from <i>Daphne kiusiana</i> var. <i>atrocaulis</i> (Rehd.) F. Maekawa. Natural Product Research, 2023, 37, 1557-1564.	1.0	1
2	Potential inhibitors of microglial activation from the roots of Vernicia montana Lour. Phytochemistry, 2022, 194, 113019.	1.4	1
3	Anti-neuroinflammatory effects in vitro and in vivo, and chemical profile of Jatropha curcas L. Bioorganic Chemistry, 2022, 122, 105720.	2.0	4
4	Triad3A-Dependent TLR4 Ubiquitination and Degradation Contributes to the Anti-Inflammatory Effects of Pterostilbene on Vascular Dementia. Journal of Agricultural and Food Chemistry, 2022, 70, 5896-5910.	2.4	8
5	Data-Driven Adaptive Quality Control Under Uncertain Conditions for a Cyber-Pharmaceutical-Development System. IEEE Transactions on Industrial Informatics, 2021, 17, 3165-3175.	7.2	4
6	Pterostilbene Alleviates Al̂² _{1â€42} â€Induced Cognitive Dysfunction via Inhibition of Oxidative Stress byÂActivatingÂNrf2 Signaling Pathway. Molecular Nutrition and Food Research, 2021, 65, e2000711.	1.5	30
7	Natural potential neuroinflammatory inhibitors from Stephania epigaea H.S. Lo. Bioorganic Chemistry, 2021, 107, 104597.	2.0	13
8	Regulation of Superoxide by BAP31 through Its Effect on p22phox and Keap1/Nrf2/HO-1 Signaling Pathway in Microglia. Oxidative Medicine and Cellular Longevity, 2021, 2021, 1-27.	1.9	0
9	Kellerin from Ferula sinkiangensis exerts neuroprotective effects after focal cerebral ischemia in rats by inhibiting microglia-mediated inflammatory responses. Journal of Ethnopharmacology, 2021, 269, 113718.	2.0	17
10	Acutissimalignan B from traditional herbal medicine Daphne kiusiana var. atrocaulis (Rehd.) F. Maekawa inhibits neuroinflammation via NF-κB Signaling pathway. Phytomedicine, 2021, 84, 153508.	2.3	15
11	Editorial: Combating Cancer With Natural Products: What Would Non-Coding RNAs Bring?. Frontiers in Oncology, 2021, 11, 747586.	1.3	6
12	Structural elucidation of spiro cyclohexandienonyl naphthalenes with potential anti-neuroinflammatory activities from Caragana acanthophylla Kom. Phytochemistry, 2021, 192, 112976.	1.4	2
13	TPE-Lasso-GBDT Method for BV-2 Cell Toxicity Classifier. Communications in Computer and Information Science, 2021, , 755-764.	0.4	1
14	Bioactive chemical constituents from the seed testa of Vernicia fordii as potential neuroinflammatory inhibitors. Phytochemistry, 2020, 171, 112233.	1.4	14
15	Inflammatory mechanism of cerebral ischemia-reperfusion injury with treatment of stepharine in rats. Phytomedicine, 2020, 79, 153353.	2.3	23
16	Bioactive sesquiterpene coumarins from the resin of Ferula sinkiangensis targeted on over-activation of microglia. Bioorganic Chemistry, 2020, 104, 104338.	2.0	8
17	Pterostilbene alleviates cerebral ischemia and reperfusion injury in rats by modulating microglial activation. Food and Function, 2020, 11, 5432-5445.	2.1	22
18	Stilbenes from the tubers of Bletilla striata with potential anti-neuroinflammatory activity. Bioorganic Chemistry, 2020, 97, 103715.	2.0	18

#	Article	IF	CITATIONS
19	Kellerin alleviates cognitive impairment in mice after ischemic stroke by multiple mechanisms. Phytotherapy Research, 2020, 34, 2258-2274.	2.8	12
20	Amide–Iminoate Isomerism in Antineuroinflammatory Isoquinoline Alkaloids from <i>Stephania cepharantha </i> . Journal of Natural Products, 2020, 83, 864-872.	1.5	16
21	Natural therapeutic agents for neurodegenerative diseases from the shells of Xanthoceras sorbifolium. Bioorganic Chemistry, 2020, 101, 104038.	2.0	7
22	Chemical constituents from shells of Xanthoceras sorbifolium. Phytochemistry, 2020, 172, 112288.	1.4	7
23	Structural elucidation and anti-neuroinflammatory activities of lignans from the testas of Vernicia montana. Bioorganic Chemistry, 2020, 97, 103690.	2.0	13
24	B-Cell Receptor-Associated Protein 31 Negatively Regulates the Expression of Monoamine Oxidase A Via R1. Frontiers in Molecular Biosciences, 2020, 7, 64.	1.6	4
25	Natural neuroprotective alkaloids from Stephania japonica (Thunb.) Miers. Bioorganic Chemistry, 2019, 91, 103175.	2.0	15
26	Isolation, Structural Elucidation, Optical Resolution, and Antineuroinflammatory Activity of Phenanthrene and 9,10-Dihydrophenanthrene Derivatives from <i>Bletilla striata</i> . Journal of Natural Products, 2019, 82, 2238-2245.	1.5	33
27	A Novel Quinolylâ€Substituted Analogue of Resveratrol Inhibits LPSâ€Induced Inflammatory Responses in Microglial Cells by Blocking the NFâ€IPB/MAPK Signaling Pathways. Molecular Nutrition and Food Research, 2019, 63, e1801380.	1.5	29
28	Natural Inhibitors on Over-Activation of Microglia from Herbals. Chemical and Pharmaceutical Bulletin, 2019, 67, 640-647.	0.6	4
29	Simulation Modeling of a Pharmaceutical Tablet Manufacturing Process via Wet Granulation. Complexity, 2019, 2019, 1-16.	0.9	6
30	BAP31 regulates IRAK1-dependent neuroinflammation in microglia. Journal of Neuroinflammation, 2019, 16, 281.	3.1	27
31	BAP31 deficiency contributes to the formation of amyloidâ€Î² plaques in Alzheimer's disease by reducing the stability of RTN3. FASEB Journal, 2019, 33, 4936-4946.	0.2	21
32	Preventive agents for neurodegenerative diseases from resin of Dracaena cochinchinensis attenuate LPS-induced microglia over-activation. Journal of Natural Medicines, 2019, 73, 318-330.	1.1	18
33	Tamarix hohenackeri Bunge exerts anti-inflammatory effects on lipopolysaccharide-activated microglia in vitro. Phytomedicine, 2018, 40, 10-19.	2.3	23
34	Long Non-coding RNAs Contribute to the Inhibition of Proliferation and EMT by Pterostilbene in Human Breast Cancer. Frontiers in Oncology, 2018, 8, 629.	1.3	47
35	B-Cell Receptor-Associated Protein 31 Regulates the Expression of Valosin-Containing Protein Through Elf2. Cellular Physiology and Biochemistry, 2018, 51, 1799-1814.	1.1	14
36	Coumarinolignoids and Taraxerane Triterpenoids from <i>Sapium discolor</i> and Their Inhibitory Potential on Microglial Nitric Oxide Production. Journal of Natural Products, 2018, 81, 2251-2258.	1.5	21

#	Article	IF	CITATIONS
37	Okanin, effective constituent of the flower tea Coreopsis tinctoria, attenuates LPS-induced microglial activation through inhibition of the TLR4/NF-ÎB signaling pathways. Scientific Reports, 2017, 7, 45705.	1.6	30
38	BAP31 is involved in T cell activation through TCR signal pathways. Scientific Reports, 2017, 7, 44809.	1.6	37
39	Biotransformation of isofraxetin-6- O - \hat{l}^2 - d -glucopyranoside by Angelica sinensis (Oliv.) Diels callus. Bioorganic and Medicinal Chemistry Letters, 2017, 27, 248-253.	1.0	9
40	Natural potential neuroinflammatory inhibitors from Alhagi sparsifolia Shap Bioorganic and Medicinal Chemistry Letters, 2017, 27, 973-978.	1.0	20
41	Natural neuro-inflammatory inhibitors from Caragana turfanensis. Bioorganic and Medicinal Chemistry Letters, 2017, 27, 4765-4769.	1.0	17
42	Novel cycloneolignans from Vernicia fordii with inhibitory effects on over-activation of BV2 cells in vitro. Scientific Reports, 2017, 7, 13608.	1.6	7
43	Characteristic α-Acid Derivatives from <i>Humulus lupulus</i> with Antineuroinflammatory Activities. Journal of Natural Products, 2017, 80, 3081-3092.	1.5	44
44	Sesquiterpene Coumarins from Ferula sinkiangensis Act as Neuroinflammation Inhibitors. Planta Medica, 2017, 83, 135-142.	0.7	34
45	Bioactive phenols as potential neuroinflammation inhibitors from the leaves of Xanthoceras sorbifolia Bunge. Bioorganic and Medicinal Chemistry Letters, 2016, 26, 5018-5023.	1.0	33
46	Biotransformation of neuro-inflammation inhibitor kellerin using Angelica sinensis (Oliv.) Diels callus. RSC Advances, 2016, 6, 97302-97312.	1.7	16
47	Minocycline protects against lipopolysaccharide-induced cognitive impairment in mice. Psychopharmacology, 2016, 233, 905-916.	1.5	55
48	Shikonin induces apoptosis in the human gastric cancer cells HGC-27 through mitochondria-mediated pathway. Pharmacognosy Magazine, 2015, 11, 250.	0.3	22
49	Oligomer procyanidins (F2) isolated from grape seeds inhibits tumor angiogenesis and cell invasion by targeting HIF-11± in vitro. International Journal of Oncology, 2015, 46, 708-720.	1.4	22
50	Anti-neuroinflammatory and NQO1 inducing activity of natural phytochemicals from Coreopsis tinctoria. Journal of Functional Foods, 2015, 17, 837-846.	1.6	42
51	Pterostilbene exerts anti-neuroinflammatory effect on lipopolysaccharide-activated microglia via inhibition of MAPK signalling pathways. Journal of Functional Foods, 2015, 19, 676-687.	1.6	35
52	Natural therapeutic agents for neurodegenerative diseases from a traditional herbal medicine Pongamia pinnata (L.) Pierre. Bioorganic and Medicinal Chemistry Letters, 2015, 25, 53-58.	1.0	34
53	New Sesquiterpene and Polymethoxy-Flavonoids from Artemisia annua L. Pharmacognosy Magazine, 2014, 10, 213.	0.3	8
54	Natural potential therapeutic agents of neurodegenerative diseases from the traditional herbal medicine Chinese Dragon׳s Blood. Journal of Ethnopharmacology, 2014, 152, 508-521.	2.0	76

#	Article	IF	CITATIONS
55	Pterostilbene attenuates lipopolysaccharide-induced learning and memory impairment possibly via inhibiting microglia activation and protecting neuronal injury in mice. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2014, 54, 92-102.	2.5	79
56	Neuronal injury, but not microglia activation, is associated with ketamine-induced experimental schizophrenic model in mice. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2013, 45, 107-116.	2.5	45
57	Neuroprotective Effect of Pseudoginsenoside-F11 on a Rat Model of Parkinson's Disease Induced by 6-Hydroxydopamine. Evidence-based Complementary and Alternative Medicine, 2013, 2013, 1-9.	0.5	31
58	Effects of Steep Pulsed Electric Fields (SPEF) on Mitochondrial Transmembrane Potential of Human Liver Cancer Cell., 2007, 2007, 5815-8.		7
59	Similar effects of clozapine and olanzapine on ethanol-induced ascorbic acid release in the prefrontal cortex of freely moving mice. Die Pharmazie, 2007, 62, 158-60.	0.3	O
60	Effects of clozapine, olanzapine and haloperidol on nitric oxide production by lipopolysaccharide-activated N9 cells. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2006, 30, 1523-1528.	2.5	62
61	Lethal Effects of Steep Pulsed Electric Field (SPEF) to Target Lymphatic Capillaries in VX <inf>2</inf> Implanted Breast Cancer of Rabbits., 2005, 2005, 4904-7.		1
62	Differential effects of clozapine on ethanol-induced ascorbic acid release in mouse and rat striatum. Neuroscience Letters, 2005, 380, 83-87.	1.0	4
63	Effects of clozapine, olanzapine and haloperidol on ethanol-induced ascorbic acid release in mouse striatum. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2005, 29, 83-89.	2.5	2
64	Lethal and inhibitory effects of steep pulsed electric field on tumor-bearing BALB/c mice. , 2004, 2004, 5005-8.		3
65	Experimental Studies on Killing and Inhibiting Effects of Steep Pulsed Electric Field (SPEF) to Target Cancer Cell and Solid Tumor. IEEE Transactions on Plasma Science, 2004, 32, 1626-1633.	0.6	51
66	Analysis of the performance of two digital methods for measuring MOA resistance current. , 0, , .		1
67	Design and realization of an on-line monitoring system for over-voltage in distribution grids. , 0, , .		O