Ricardo Boavida Ferreira

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4802595/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Genome-wide Analysis of Transcript Abundance and Translation in Arabidopsis Seedlings Subjected to Oxygen Deprivation. Annals of Botany, 2005, 96, 647-660.	1.4	295
2	The role of plant defence proteins in fungal pathogenesis. Molecular Plant Pathology, 2007, 8, 677-700.	2.0	217
3	The wine proteins. Trends in Food Science and Technology, 2001, 12, 230-239.	7.8	174
4	Osmotin and Thaumatin from Grape: A Putative General Defense Mechanism Against Pathogenic Fungi. Phytopathology, 2003, 93, 1505-1512.	1.1	127
5	Phenolic sulfates as new and highly abundant metabolites in human plasma after ingestion of a mixed berry fruit purée. British Journal of Nutrition, 2015, 113, 454-463.	1.2	105
6	Neuroprotective effect of blackberry (Rubus sp.) polyphenols is potentiated after simulated gastrointestinal digestion. Food Chemistry, 2012, 131, 1443-1452.	4.2	101
7	Antioxidant Properties and Neuroprotective Capacity of Strawberry Tree Fruit (Arbutus unedo). Nutrients, 2010, 2, 214-229.	1.7	87
8	Engineering grapevine for increased resistance to fungal pathogens without compromising wine stability. Trends in Biotechnology, 2004, 22, 168-173.	4.9	77
9	Urinary metabolite profiling identifies novel colonic metabolites and conjugates of phenolics in healthy volunteers. Molecular Nutrition and Food Research, 2014, 58, 1414-1425.	1.5	72
10	The seed storage proteins from Lupinus albus. Phytochemistry, 1994, 37, 641-648.	1.4	70
11	Neuroprotective effects of digested polyphenols from wild blackberry species. European Journal of Nutrition, 2013, 52, 225-236.	1.8	68
12	Fungal Pathogens: The Battle for Plant Infection. Critical Reviews in Plant Sciences, 2006, 25, 505-524.	2.7	66
13	(Poly)phenols protect from α-synuclein toxicity by reducing oxidative stress and promoting autophagy. Human Molecular Genetics, 2015, 24, 1717-1732.	1.4	66
14	Characterization of the Wood Mycobiome of Vitis vinifera in a Vineyard Affected by Esca. Spatial Distribution of Fungal Communities and Their Putative Relation With Leaf Symptoms. Frontiers in Plant Science, 2019, 10, 910.	1.7	66
15	The complexity of protein haze formation in wines. Food Chemistry, 2009, 112, 169-177.	4.2	55
16	Comparison of different methods for DNA-free RNA isolation from SK-N-MC neuroblastoma. BMC Research Notes, 2011, 4, 3.	0.6	55
17	Analysis of Phenolic Compounds in Portuguese Wild and Commercial Berries after Multienzyme Hydrolysis. Journal of Agricultural and Food Chemistry, 2013, 61, 4053-4062.	2.4	54
18	Differences in the Expression of Cold Stress–Related Genes and in the Swarming Motility Among Persistent and Sporadic Strains of <i>Listeria monocytogenes</i> . Foodborne Pathogens and Disease, 2015, 12, 576-584.	0.8	52

#	Article	IF	CITATIONS
19	Bioaccessible (poly)phenol metabolites from raspberry protect neural cells from oxidative stress and attenuate microglia activation. Food Chemistry, 2017, 215, 274-283.	4.2	52
20	Epicoccum layuense a potential biological control agent of esca-associated fungi in grapevine. PLoS ONE, 2019, 14, e0213273.	1.1	47
21	Seed Proteins ofLupinus mutabilis. Journal of Agricultural and Food Chemistry, 1997, 45, 3821-3825.	2.4	46
22	Protein haze formation in wines revisited. The stabilising effect of organic acids. Food Chemistry, 2010, 122, 1067-1075.	4.2	45
23	Contribution of Yap1 towards <i>Saccharomyces cerevisiae</i> adaptation to arsenic-mediated oxidative stress. Biochemical Journal, 2008, 414, 301-311.	1.7	44
24	Characterization of the Proteins from Vigna unguiculata Seeds. Journal of Agricultural and Food Chemistry, 2004, 52, 1682-1687.	2.4	43
25	Antioxidant Capacity of Macaronesian Traditional Medicinal Plants. Molecules, 2010, 15, 2576-2592.	1.7	43
26	Environmental Conditions during Vegetative Growth Determine the Major Proteins That Accumulate in Mature Grapes. Journal of Agricultural and Food Chemistry, 2003, 51, 4046-4053.	2.4	41
27	Effect of osmotic stress on protein turnover in Lemna minor fronds. Planta, 1989, 179, 456-465.	1.6	40
28	Assessment of Potential Effects of Common Fining Agents Used for White Wine Protein Stabilization. American Journal of Enology and Viticulture, 2012, 63, 574-578.	0.9	38
29	Transcriptomic changes following the compatible interaction Vitis vinifera–Erysiphe necator. Paving the way towards an enantioselective role in plant defence modulation. Plant Physiology and Biochemistry, 2013, 68, 71-80.	2.8	38
30	The diversity of pathogenesis-related proteins decreases during grape maturation. Phytochemistry, 2007, 68, 416-425.	1.4	37
31	Reference Gene Validation for Quantitative RT-PCR during Biotic and Abiotic Stresses in Vitis vinifera. PLoS ONE, 2014, 9, e111399.	1.1	37
32	Protein Degradation in <i>Lemna</i> with Particular Reference to Ribulose Bisphosphate Carboxylase. Plant Physiology, 1987, 83, 869-877.	2.3	36
33	Dyospiros kaki phenolics inhibit colitis and colon cancer cell proliferation, but not gelatinase activities. Journal of Nutritional Biochemistry, 2017, 46, 100-108.	1.9	34
34	Conversion of ribulose-1,5-bisphosphate carboxylase to an acidic and catalytically inactive form by extracts of osmotically stressed Lemna minor fronds. Planta, 1989, 179, 448-455.	1.6	33
35	Characterization of Globulins from Common Vetch (Vicia sativaL.). Journal of Agricultural and Food Chemistry, 2004, 52, 4913-4920.	2.4	33
36	Protein degradation in C3 and C4 plants with particular reference to ribulose bisphosphate carboxylase and glycolate oxidase. Journal of Experimental Botany, 1998, 49, 807-816.	2.4	31

#	Article	IF	CITATIONS
37	The neuroprotective potential of phenolic-enriched fractions from four Juniperus species found in Portugal. Food Chemistry, 2012, 135, 562-570.	4.2	30
38	Vitis vinifera secondary metabolism as affected by sulfate depletion: Diagnosis through phenylpropanoid pathway genes and metabolites. Plant Physiology and Biochemistry, 2013, 66, 118-126.	2.8	30
39	Storage Proteins fromLathyrus sativusSeeds. Journal of Agricultural and Food Chemistry, 2000, 48, 5432-5439.	2.4	29
40	A Nontoxic Polypeptide Oligomer with a Fungicide Potency under Agricultural Conditions Which Is Equal or Greater than That of Their Chemical Counterparts. PLoS ONE, 2015, 10, e0122095.	1.1	28
41	Calcium- and Magnesium-Dependent Aggregation of Legume Seed Storage Proteins. Journal of Agricultural and Food Chemistry, 1999, 47, 3009-3015.	2.4	27
42	Proteins in Soy Might Have a Higher Role in Cancer Prevention than Previously Expected: Soybean Protein Fractions Are More Effective MMP-9 Inhibitors Than Non-Protein Fractions, Even in Cooked Seeds. Nutrients, 2017, 9, 201.	1.7	27
43	Utilization of an Improved Methodology To IsolateLupinus albusConglutins in the Study of Their Sedimentation Coefficients. Journal of Agricultural and Food Chemistry, 1997, 45, 3908-3913.	2.4	26
44	Yap1 mediates tolerance to cobalt toxicity in the yeast Saccharomyces cerevisiae. Biochimica Et Biophysica Acta - General Subjects, 2014, 1840, 1977-1986.	1.1	24
45	Bisphenol A Disrupts Transcription and Decreases Viability in Aging Vascular Endothelial Cells. International Journal of Molecular Sciences, 2014, 15, 15791-15805.	1.8	23
46	Protein degradation in C3 and C4 plants subjected to nutrient starvation. Particular reference to ribulose bisphosphate carboxylase/oxygenase and glycolate oxidase. Plant Science, 2000, 153, 15-23.	1.7	22
47	Immunodetection of legume proteins resistant to small intestinal digestion in weaned piglets. Journal of the Science of Food and Agriculture, 2003, 83, 1571-1580.	1.7	22
48	Comparative Analysis of the Exoproteomes ofListeria monocytogenesStrains Grown at Low Temperatures. Foodborne Pathogens and Disease, 2013, 10, 428-434.	0.8	22
49	The Unique Biosynthetic Route from Lupinus β-Conglutin Gene to Blad. PLoS ONE, 2010, 5, e8542.	1.1	22
50	Legume Proteins of the Vicilin Family are More Immunogenic Than Those of the Legumin Family in Weaned Piglets. Food and Agricultural Immunology, 2002, 14, 51-63.	0.7	21
51	Exposure of Lemna minor to Arsenite: Expression Levels of the Components and Intermediates of the Ubiquitin/Proteasome Pathway. Plant and Cell Physiology, 2006, 47, 1262-1273.	1.5	20
52	Sulfur dioxide induced aggregation of wine thaumatin-like proteins: Role of disulfide bonds. Food Chemistry, 2018, 259, 166-174.	4.2	19
53	White Rot Fungi (Hymenochaetales) and Esca of Grapevine: Insights from Recent Microbiome Studies. Journal of Fungi (Basel, Switzerland), 2021, 7, 770.	1.5	19
54	A secretome-based methodology may provide a better characterization of the virulence of Listeria monocytogenes: Preliminary results. Talanta, 2010, 83, 457-463.	2.9	18

#	Article	IF	CITATIONS
55	Chemical characterization and bioactivity of phytochemicals from Iberian endemic Santolina semidentata and strategies for ex situ propagation. Industrial Crops and Products, 2015, 74, 505-513.	2.5	18
56	Fungicides and the Grapevine Wood Mycobiome: A Case Study on Tracheomycotic Ascomycete Phaeomoniella chlamydospora Reveals Potential for Two Novel Control Strategies. Frontiers in Plant Science, 2019, 10, 1405.	1.7	18
57	Protein Degradation in Lemna with Particular Reference to Ribulose Bisphosphate Carboxylase. Plant Physiology, 1987, 83, 878-883.	2.3	17
58	Preparation of polyclonal antibodies specific for wine proteins. Journal of the Science of Food and Agriculture, 1999, 79, 772-778.	1.7	17
59	The challenging SO2-mediated chemical build-up of protein aggregates in wines. Food Chemistry, 2016, 192, 460-469.	4.2	17
60	(Poly)phenol metabolites from Arbutus unedo leaves protect yeast from oxidative injury by activation of antioxidant and protein clearance pathways. Journal of Functional Foods, 2017, 32, 333-346.	1.6	17
61	Self-aggregation of legume seed storage proteins inside the protein storage vacuoles is electrostatic in nature, rather than lectin-mediated. FEBS Letters, 2003, 534, 106-110.	1.3	16
62	Are Vicilins Another Major Class of Legume Lectins?. Molecules, 2014, 19, 20350-20373.	1.7	16
63	Reduction of Inflammation and Colon Injury by a Spearmint Phenolic Extract in Experimental Bowel Disease in Mice. Medicines (Basel, Switzerland), 2019, 6, 65.	0.7	16
64	Lupin Seed Protein Extract Can Efficiently Enrich the Physical Properties of Cookies Prepared with Alternative Flours. Foods, 2020, 9, 1064.	1.9	16
65	Bioactive compounds from endemic plants of Southwest Portugal: Inhibition of acetylcholinesterase and radical scavenging activities. Pharmaceutical Biology, 2012, 50, 239-246.	1.3	15
66	The catabolism of ribulose bisphosphate carboxylase from higher plants. A hypothesis. Plant Science, 2001, 161, 55-65.	1.7	14
67	Reduction of inflammation and colon injury by a Pennyroyal phenolic extract in experimental inflammatory bowel disease in mice. Biomedicine and Pharmacotherapy, 2019, 118, 109351.	2.5	14
68	Regulatory role for a conserved motif adjacent to the homeodomain of Hox10 proteins. Development (Cambridge), 2012, 139, 2703-2710.	1.2	13
69	New Lectins from Mediterranean Flora. Activity against HT29 Colon Cancer Cells. International Journal of Molecular Sciences, 2019, 20, 3059.	1.8	13
70	Vicilin-type globulins follow distinct patterns of degradation in different species of germinating legume seeds. Food Chemistry, 2007, 102, 323-329.	4.2	12
71	Glycemic Response and Bioactive Properties of Gluten-Free Bread with Yoghurt or Curd-Cheese Addition. Foods, 2020, 9, 1410.	1.9	11
72	Daily polyphenol intake from fresh fruits in Portugal: contribution from berry fruits. International Journal of Food Sciences and Nutrition, 2013, 64, 1022-1029.	1.3	10

#	Article	IF	CITATIONS
73	Is the Exoproteome Important for Bacterial Pathogenesis? Lessons Learned from Interstrain Exoprotein Diversity inListeria monocytogenesGrown at Different Temperatures. OMICS A Journal of Integrative Biology, 2014, 18, 553-569.	1.0	10
74	Synthesis and characterization of dicarboxymethyl cellulose. Cellulose, 2020, 27, 1965-1974.	2.4	10
75	Differential inhibition of gelatinase activity in human colon adenocarcinoma cells by Aloe vera and Aloe arborescens extracts. BMC Complementary Medicine and Therapies, 2020, 20, 379.	1.2	9
76	Improved method for the extraction of proteins fromEucalyptusleaves. Application in leaf response to temperature. , 1997, 8, 279-285.		8
77	Elucidating Phytochemical Production in Juniperus sp.: Seasonality and Response to Stress Situations. Journal of Agricultural and Food Chemistry, 2013, 61, 4044-4052.	2.4	8
78	Blad-Containing Oligomer Fungicidal Activity on Human Pathogenic Yeasts. From the Outside to the Inside of the Target Cell. Frontiers in Microbiology, 2016, 7, 1803.	1.5	8
79	Blad-containing oligomer: a novel fungicide used in crop protection as an alternative treatment for tinea pedis and tinea versicolor. Journal of Medical Microbiology, 2018, 67, 198-207.	0.7	8
80	DCMC as a Promising Alternative to Bentonite in White Wine Stabilization. Impact on Protein Stability and Wine Aromatic Fraction. Molecules, 2021, 26, 6188.	1.7	8
81	Extended Cheese Whey Fermentation Produces a Novel Casein-Derived Antibacterial Polypeptide That Also Inhibits Gelatinases MMP-2 and MMP-9. International Journal of Molecular Sciences, 2021, 22, 11130.	1.8	8
82	Valuing the Endangered Species Antirrhinum lopesianum: Neuroprotective Activities and Strategies for in vitro Plant Propagation. Antioxidants, 2013, 2, 273-292.	2.2	7
83	Technological Potential of a Lupin Protein Concentrate as a Nutraceutical Delivery System in Baked Cookies. Foods, 2021, 10, 1929.	1.9	7
84	Is caffeic acid, as the major metabolite present in Moscatel wine protein haze hydrolysate, involved in protein haze formation?. Food Research International, 2017, 98, 103-109.	2.9	6
85	Combination of Trans-Resveratrol and ε-Viniferin Induces a Hepatoprotective Effect in Rats with Severe Acute Liver Failure via Reduction of Oxidative Stress and MMP-9 Expression. Nutrients, 2021, 13, 3677.	1.7	6
86	Lupinus albus Protein Components Inhibit MMP-2 and MMP-9 Gelatinolytic Activity In Vitro and In Vivo. International Journal of Molecular Sciences, 2021, 22, 13286.	1.8	6
87	Missing pieces in protein deposition and mobilization inside legume seed storage vacuoles: calcium and magnesium ions. Seed Science Research, 2012, 22, 249-258.	0.8	5
88	Multiple lectin detection by cell membrane affinity binding. Carbohydrate Research, 2012, 352, 206-210.	1.1	5
89	Fusion proteins towards fungi and bacteria in plant protection. Microbiology (United Kingdom), 2018, 164, 11-19.	0.7	5
90	The Interaction between Tribolium castaneum and Mycotoxigenic Aspergillus flavus in Maize Flour. Insects, 2021, 12, 730.	1.0	5

#	Article	IF	CITATIONS
91	A proposed lectinâ€mediated mechanism to explain the in Vivo antihyperglycemic activity of γâ€conglutin from Lupinus albus seeds. Food Science and Nutrition, 2021, 9, 5980-5996.	1.5	5
92	β-N-Acetylhexosaminidase involvement in α-conglutin mobilization in Lupinus albus. Journal of Plant Physiology, 2013, 170, 1047-1056.	1.6	4
93	Bridging the Gap to Non-toxic Fungal Control: Lupinus-Derived Blad-Containing Oligomer as a Novel Candidate to Combat Human Pathogenic Fungi. Frontiers in Microbiology, 2017, 8, 1182.	1.5	4
94	Microbial Blends: Terminology Overview and Introduction of the Neologism "Skopobiota― Frontiers in Microbiology, 2021, 12, 659592.	1.5	4
95	Lupin Protein Concentrate as a Novel Functional Food Additive That Can Reduce Colitis-Induced Inflammation and Oxidative Stress. Nutrients, 2022, 14, 2102.	1.7	4
96	Genome-wide Analysis of Transcript Abundance and Translation in Arabidopsis Seedlings Subjected to Oxygen Deprivation. Annals of Botany, 2005, 96, 1142-1142.	1.4	3
97	An Up-Scalable and Cost-Effective Methodology for Isolating a Polypeptide Matrix Metalloproteinase-9 Inhibitor from Lupinus albus Seeds. Foods, 2021, 10, 1663.	1.9	3
98	Understanding the control strategies effective against the esca leaf stripe symptom: the edge hypothesis. Phytopathologia Mediterranea, 2022, 61, 153-164.	0.6	3
99	New Alternatives to Milk From Pulses: Chickpea and Lupin Beverages With Improved Digestibility and Potential Bioactivities for Human Health. Frontiers in Nutrition, 0, 9, .	1.6	3
100	The Live Universe. A Biologist's Perspective. Frontiers in Astronomy and Space Sciences, 2017, 4, .	1.1	2
101	Maximizing Blad-containing oligomer fungicidal activity in sweet cultivars of Lupinus albus seeds. Industrial Crops and Products, 2021, 162, 113242.	2.5	2
102	Immunological exercises for beginners. Biochemical Education, 1996, 24, 176-178.	0.1	1
103	The Environmental Pollutant Bisphenol A Interferes with Nucleolar Structure. , 2012, , .		0
104	Metabolitos de frutas vermelhas para um envelhecimento saudável do cérebro. Revista Brasileira De Ciências Do Envelhecimento Humano, 2015, 12, .	0.0	0