
## Gregory J Kelly

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4802521/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                    | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Affordances of engineering with English learners. Science Education, 2021, 105, 255-280.                                                                                                                                   | 1.8 | 5         |
| 2  | Theory, Methods, and Expressive Potential of Discourse Studies in Science Education. Research in Science Education, 2021, 51, 225-233.                                                                                     | 1.4 | 3         |
| 3  | Failure and Improvement in Elementary Engineering. Journal of Research in Stem Education, 2021, 7,<br>69-92.                                                                                                               | 1.1 | 3         |
| 4  | Translanguaging in a middle school science classroom: constructing scientific arguments in English and Spanish. Cultural Studies of Science Education, 2020, 15, 485-510.                                                  | 0.9 | 20        |
| 5  | The impact of engineering curriculum design principles on elementary students' engineering and science learning. Journal of Research in Science Teaching, 2020, 57, 423-453.                                               | 2.0 | 38        |
| 6  | Nature of Science and Nature of Scientists. Science and Education, 2020, 29, 1097-1116.                                                                                                                                    | 1.7 | 10        |
| 7  | Studying the Over-Time Construction of Knowledge in Educational Settings: A Microethnographic Discourse Analysis Approach. Review of Research in Education, 2020, 44, 161-194.                                             | 0.8 | 23        |
| 8  | Learning Progressions and Science Practices. Science and Education, 2019, 28, 833-841.                                                                                                                                     | 1.7 | 9         |
| 9  | The development of Chinese undergraduate students' competence of scientific writing in the context<br>of an advanced organic chemistry experiment course. Chemistry Education Research and Practice,<br>2019, 20, 270-287. | 1.4 | 11        |
| 10 | The influences of integrating reading, peer evaluation, and discussion on undergraduate students'<br>scientific writing. International Journal of Science Education, 2019, 41, 1408-1433.                                  | 1.0 | 16        |
| 11 | Epistemic tools in engineering design for Kâ€12 education. Science Education, 2019, 103, 1080-1111.                                                                                                                        | 1.8 | 37        |
| 12 | Collective Reasoning in Elementary Engineering Education. , 2019, , 339-355.                                                                                                                                               |     | 3         |
| 13 | How the environment is positioned in the <i>Next Generation Science Standards:</i> a critical discourse analysis. Environmental Education Research, 2018, 24, 731-753.                                                     | 1.6 | 21        |
| 14 | Examining emotional expressions in discourse: methodological considerations. Cultural Studies of Science Education, 2018, 13, 905-924.                                                                                     | 0.9 | 14        |
| 15 | Epistemic Practices and Science Education. Science: Philosophy, History and Education, 2018, , 139-165.                                                                                                                    | 0.6 | 93        |
| 16 | Developing Epistemic Aims and Supports for Engaging Students in Scientific Practices. Science and Education, 2018, 27, 245-246.                                                                                            | 1.7 | 12        |
| 17 | From the teacher's eyes: facilitating teachers noticings on informal formative assessments (IFAs) and exploring the challenges to effective implementation. International Journal of Science Education, 2017, 39, 181-212. | 1.0 | 21        |
| 18 | The roles of engineering notebooks in shaping elementary engineering student discourse and practice.<br>International Journal of Science Education, 2017, 39, 1194-1217.                                                   | 1.0 | 25        |

GREGORY J KELLY

| #  | Article                                                                                                                                                                                                                    | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Epistemic Practices of Engineering for Education. Science Education, 2017, 101, 486-505.                                                                                                                                   | 1.8 | 119       |
| 20 | Engaging in identity work through engineering practices in elementary classrooms. Linguistics and Education, 2017, 39, 48-59.                                                                                              | 0.5 | 24        |
| 21 | Inquiry Learning and Teaching in Science Education. , 2017, , 1148-1153.                                                                                                                                                   |     | Ο         |
| 22 | Learning Science: Discourse Practices. , 2017, , 223-237.                                                                                                                                                                  |     | 2         |
| 23 | Learning Science: Discourse Practices. , 2016, , 1-15.                                                                                                                                                                     |     | 2         |
| 24 | Inquiry Learning and Teaching in Science Education. , 2016, , 1-6.                                                                                                                                                         |     | 2         |
| 25 | Discourse in Science Learning. , 2015, , 333-335.                                                                                                                                                                          |     | Ο         |
| 26 | Sociology of Science. , 2015, , 996-998.                                                                                                                                                                                   |     | 0         |
| 27 | Inquiry Teaching and Learning: Philosophical Considerations. , 2014, , 1363-1380.                                                                                                                                          |     | 22        |
| 28 | Multi-level Discourse Analysis in a Physics Teaching Methods Course from the Psychological<br>Perspective of Activity Theory. International Journal of Science Education, 2014, 36, 2694-2718.                             | 1.0 | 10        |
| 29 | The social bases of disciplinary knowledge and practice in productive disciplinary engagement.<br>International Journal of Educational Research, 2014, 64, 211-214.                                                        | 1.2 | 12        |
| 30 | A cultural historical activity theory perspective to understand preservice science teachers'<br>reflections on and tensions during a microteaching experience. Cultural Studies of Science<br>Education, 2014, 9, 675-697. | 0.9 | 13        |
| 31 | Analyzing Classroom Activities: Theoretical and Methodological Considerations. Contributions From Science Education Research, 2014, , 353-368.                                                                             | 0.4 | 7         |
| 32 | Analysis of Teaching and Learning Practices in Physics and Chemistry Education: Theoretical and Methodological Issues. Contributions From Science Education Research, 2014, , 469-485.                                     | 0.4 | 1         |
| 33 | Global Learning Communities: A Comparison of Online Domestic and International Science Class<br>Partnerships. Journal of Science Education and Technology, 2013, 22, 475-487.                                              | 2.4 | 3         |
| 34 | Crossing the Border from Science Student to Science Teacher: Preservice Teachers' Views and<br>Experiences Learning to Teach Inquiry. Journal of Science Teacher Education, 2013, 24, 427-447.                             | 1.4 | 24        |
| 35 | Expanding discourse repertoires with hybridity. Cultural Studies of Science Education, 2012, 7, 535-539.                                                                                                                   | 0.9 | 3         |
| 36 | Beyond Argumentation: Sense-Making Discourse in the Science Classroom. , 2012, , 265-281.                                                                                                                                  |     | 18        |

GREGORY J KELLY

| #  | Article                                                                                                                                                             | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Science Learning and Epistemology. , 2012, , 281-291.                                                                                                               |     | 73        |
| 38 | Contrasting Stories of Inclusion/Exclusion in the Chemistry Classroom. International Journal of Science Education, 2011, 33, 747-772.                               | 1.0 | 8         |
| 39 | What Counts as Evidence and Equity?. Review of Research in Education, 2010, 34, vii-xvi.                                                                            | 0.8 | 34        |
| 40 | Complexity of Secondary Scientific Data Sources and Students' Argumentative Discourse.<br>International Journal of Science Education, 2010, 32, 1207-1225.          | 1.0 | 17        |
| 41 | Activity, Discourse, & Meaning Some Directions for Science Education. Cultural Studies of Science Education, 2010, , 39-52.                                         | 0.2 | 5         |
| 42 | Publishing inScience Education. Science Education, 2008, 92, 969-972.                                                                                               | 1.8 | 0         |
| 43 | What Counts as Knowledge in Educational Settings: Disciplinary Knowledge, Assessment, and<br>Curriculum. Review of Research in Education, 2008, 32, vii-x.          | 0.8 | 40        |
| 44 | Learning Science: Discursive Practices. , 2008, , 1071-1082.                                                                                                        |     | 3         |
| 45 | Analysis of Lines of Reasoning in Written Argumentation. Science & Technology Education Library, 2007, , 137-158.                                                   | 0.7 | 29        |
| 46 | Understanding the Construction of a Science Storyline in a Chemistry Classroom. Pedagogies, 2007, 2, 165-177.                                                       | 0.4 | 14        |
| 47 | A sociocultural perspective on mediated activity in third grade science. Cultural Studies of Science Education, 2007, 1, 467-495.                                   | 0.9 | 22        |
| 48 | Scientific literacy and discursive identity: A theoretical framework for understanding science learning. Science Education, 2005, 89, 779-802.                      | 1.8 | 221       |
| 49 | An Investigation of Student Engagement in a Global Warming Debate. Journal of Geoscience Education, 2005, 53, 75-84.                                                | 0.8 | 19        |
| 50 | Science literacy and academic identity formulation. Journal of Research in Science Teaching, 2004, 41, 1111-1144.                                                   | 2.0 | 72        |
| 51 | How Students Argue Scientific Claims: A Rhetorical-Semantic Analysis. Applied Linguistics, 2003, 24, 28-55.                                                         | 1.1 | 93        |
| 52 | Assessment of Evidence in University Students' Scientific Writing. Science and Education, 2003, 12, 341-363.                                                        | 1.7 | 52        |
| 53 | Challenges of standards-based reform: The example of California's science content standards and textbook adoption process. Science Education, 2003, 87, 378-389.    | 1.8 | 35        |
| 54 | Applying Argumentation Analysis to Assess the Quality of University Oceanography Students'<br>Scientific Writing. Journal of Geoscience Education, 2002, 50, 40-48. | 0.8 | 18        |

GREGORY J KELLY

| #  | Article                                                                                                                                                                                       | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Communicative Demands of Learning Science Through Technological Design: Third Grade Students'<br>Construction of Solar Energy Devices. Linguistics and Education, 2002, 13, 483-532.          | 0.5 | 29        |
| 56 | Epistemic levels in argument: An analysis of university oceanography students' use of evidence in writing. Science Education, 2002, 86, 314-342.                                              | 1.8 | 288       |
| 57 | Common Task and Uncommon Knowledge: Dissenting Voices in the Discursive Construction of Physics<br>Across Small Laboratory Groups. Linguistics and Education, 2001, 12, 135-174.              | 0.5 | 49        |
| 58 | Ways of Knowing beyond Facts and Laws of Science: An Ethnographic Investigation of Student<br>Engagement in Scientific Practices. Journal of Research in Science Teaching, 2000, 37, 237-258. | 2.0 | 82        |
| 59 | Experiments, contingencies, and curriculum: Providing opportunities for learning through improvisation in science teaching. Science Education, 2000, 84, 624-657.                             | 1.8 | 40        |
| 60 | The epistemological framing of a discipline: Writing science in university oceanography. Journal of<br>Research in Science Teaching, 2000, 37, 691-718.                                       | 2.0 | 65        |
| 61 | Learning with understanding. Journal of Research in Science Teaching, 2000, 37, 757-759.                                                                                                      | 2.0 | 3         |
| 62 | Evolution of Qualitative Research Methodology: Looking Beyond Defense to Possibilities. Reading<br>Research Quarterly, 1999, 34, 368-377.                                                     | 1.8 | 14        |
| 63 | The sound of music: Constructing science as sociocultural practices through oral and written discourse. Journal of Research in Science Teaching, 1999, 36, 883-915.                           | 2.0 | 185       |
| 64 | Methodological considerations for studying science-in-the-making in educational settings. Research<br>in Science Education, 1998, 28, 23-49.                                                  | 1.4 | 82        |
| 65 | Students' reasoning about electricity: combining performance assessments with argumentation<br>analysis. International Journal of Science Education, 1998, 20, 849-871.                       | 1.0 | 236       |
| 66 | Research traditions in comparative context: A philosophical challenge to radical constructivism.<br>Science Education, 1997, 81, 355-375.                                                     | 1.8 | 40        |
| 67 | An ethnographic investigation of the discourse processes of school science. Science Education, 1997, 81, 533-559.                                                                             | 1.8 | 113       |
| 68 | Student's interaction with computer representations: Analysis of discourse in laboratory groups.<br>Journal of Research in Science Teaching, 1996, 33, 693-707.                               | 2.0 | 68        |
| 69 | Science education in sociocultural context: Perspectives from the sociology of science. Science Education, 1993, 77, 207-220.                                                                 | 1.8 | 113       |
| 70 | Discourse Practices in Science Learning and Teaching. , 0, , .                                                                                                                                |     | 2         |
| 71 | The Roles of Engineering Notebooks in Shaping Elementary Engineering Student Discourse and<br>Practice (RTP). , 0, , .                                                                        |     | 0         |
| 72 | Affordances of Engineering for Elementary-aged English Learners (Fundamental, Diversity). , 0, , .                                                                                            |     | 0         |