
Frank L Conlon

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4802264/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	CHD4 is recruited by GATA4 and NKX2-5 to repress noncardiac gene programs in the developing heart. Genes and Development, 2022, 36, 468-482.	5.9	15
2	Cardiac proteomics reveals sex chromosome-dependent differences between males and females that arise prior to gonad formation. Developmental Cell, 2021, 56, 3019-3034.e7.	7.0	37
3	<i>Xenopus</i> : Experimental Access to Cardiovascular Development, Regeneration Discovery, and Cardiovascular Heart-Defect Modeling. Cold Spring Harbor Perspectives in Biology, 2020, 12, a037200.	5.5	9
4	Content and Performance of the MiniMUGA Genotyping Array: A New Tool To Improve Rigor and Reproducibility in Mouse Research. Genetics, 2020, 216, 905-930.	2.9	58
5	A reference map of murine cardiac transcription factor chromatin occupancy identifies dynamic and conserved enhancers. Nature Communications, 2019, 10, 4907.	12.8	100
6	Conservation and divergence of protein pathways in the vertebrate heart. PLoS Biology, 2019, 17, e3000437.	5.6	18
7	Proteomic-based approaches to cardiac development and disease. Current Opinion in Chemical Biology, 2019, 48, 150-157.	6.1	10
8	INTACT Proteomics in <i>Xenopus</i> . Cold Spring Harbor Protocols, 2019, 2019, pdb.prot098384.	0.3	5
9	Initiating Events in Direct Cardiomyocyte Reprogramming. Cell Reports, 2018, 22, 1913-1922.	6.4	23
10	At <scp>SERPIN</scp> 1 is an inhibitor of the metacaspase At <scp>MC</scp> 1â€mediated cell death and autocatalytic processing <i>in planta</i> . New Phytologist, 2018, 218, 1156-1166.	7.3	47
11	Evolutionarily conserved <i>Tbx5</i> – <i>Wnt2/2b</i> pathway orchestrates cardiopulmonary development. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E10615-E10624.	7.1	55
12	CHD4 and the NuRD complex directly control cardiac sarcomere formation. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 6727-6732.	7.1	42
13	Formation of a TBX20-CASZ1 protein complex is protective against dilated cardiomyopathy and critical for cardiac homeostasis. PLoS Genetics, 2017, 13, e1007011.	3.5	24
14	Emerging Field of Cardiomics: High-Throughput Investigations into Transcriptional Regulation of Cardiovascular Development and Disease. Trends in Genetics, 2016, 32, 707-716.	6.7	11
15	Identifying Regulators of Morphogenesis Common to Vertebrate Neural Tube Closure and <i>Caenorhabditis elegans </i> Castrulation. Genetics, 2016, 202, 123-139.	2.9	22
16	The Cardiac TBX5 Interactome Reveals a Chromatin Remodeling Network Essential for Cardiac Septation. Developmental Cell, 2016, 36, 262-275.	7.0	71
17	The Lhx9-Integrin pathway is essential for positioning of the proepicardial organ. Development (Cambridge), 2016, 143, 831-40.	2.5	22
18	<i>Casz1</i> is required for cardiomyocyte G1-to-S phase progression during mammalian cardiac development. Development (Cambridge), 2015, 142, 2037-2047.	2.5	35

FRANK L CONLON

#	Article	IF	CITATIONS
19	A Distinct Mechanism of Vascular Lumen Formation in Xenopus Requires EGFL7. PLoS ONE, 2015, 10, e0116086.	2.5	14
20	Cellular and molecular mechanisms underlying blood vessel lumen formation. BioEssays, 2014, 36, 251-259.	2.5	42
21	RNA-seq in the tetraploid Xenopus laevis enables genome-wide insight in a classic developmental biology model organism. Methods, 2014, 66, 398-409.	3.8	15
22	Differential regulation of CASZ1 protein expression during cardiac and skeletal muscle development. Developmental Dynamics, 2014, 243, 948-956.	1.8	16
23	Congenital heart disease protein 5 associates with CASZ1 to maintain myocardial tissue integrity. Development (Cambridge), 2014, 141, 3040-3049.	2.5	23
24	A Gro/TLE-NuRD Corepressor Complex Facilitates Tbx20-Dependent Transcriptional Repression. Journal of Proteome Research, 2013, 12, 5395-5409.	3.7	35
25	CASZ1 Promotes Vascular Assembly and Morphogenesis through the Direct Regulation of an EGFL7/RhoA-Mediated Pathway. Developmental Cell, 2013, 25, 132-143.	7.0	63
26	Transcriptional regulation of blood vessel formation. Cell Cycle, 2013, 12, 2165-2166.	2.6	12
27	The CASZ1/ <i>Egfl7</i> transcriptional pathway is required for RhoA expression in vascular endothelial cells. Small GTPases, 2013, 4, 231-235.	1.6	14
28	Immunoisolation of Protein Complexes from Xenopus. Methods in Molecular Biology, 2012, 917, 369-390.	0.9	21
29	<i>Xenopus</i> : An emerging model for studying congenital heart disease. Birth Defects Research Part A: Clinical and Molecular Teratology, 2011, 91, 495-510.	1.6	39
30	Vertebrate CASTOR Is Required for Differentiation of Cardiac Precursor Cells at the Ventral Midline. Developmental Cell, 2008, 14, 616-623.	7.0	50
31	Decoding development inXenopus tropicalis. Genesis, 2007, 45, 418-426.	1.6	25
32	Small heat shock protein Hsp27 is required for proper heart tube formation. Genesis, 2007, 45, 667-678.	1.6	52
33	Developmental expression patterns ofTbx1,Tbx2,Tbx5, andTbx20 inXenopus tropicalis. Developmental Dynamics, 2006, 235, 1623-1630.	1.8	29
34	Tbx5 and Tbx20 act synergistically to control vertebrate heart morphogenesis. Development (Cambridge), 2005, 132, 553-563.	2.5	126
35	Transcriptional mechanisms of congenital heart disease. Drug Discovery Today Disease Mechanisms, 2005, 2, 33-38.	0.8	8
36	T-box genes in early embryogenesis. Developmental Dynamics, 2004, 229, 201-218.	1.8	261

#	Article	IF	CITATIONS
37	Developmental expression of the Xenopus laevis Tbx20 orthologue. Development Genes and Evolution, 2003, 212, 604-607.	0.9	36
38	The T-box family. Genome Biology, 2002, 3, reviews3008.1.	9.6	132