Guangdong Zhou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/480203/publications.pdf

Version: 2024-02-01

933447 25 271 10 citations h-index papers

g-index 25 25 25 293 docs citations times ranked citing authors all docs

940533

16

#	Article	IF	Citations
1	Study on the Mechanism of Asphaltenes Reducing Oil-Water Interfacial Tension. Chemical Research in Chinese Universities, 2022, 38, 616-621.	2.6	4
2	Enhanced Magnetorheological Behavior of a Carbonylâ€Ironâ€Based Fluid via Addition of Fe ₃ O ₄ /Halloysiteâ€Nanotube Composite Particles. Physica Status Solidi (A) Applications and Materials Science, 2022, 219, .	1.8	0
3	Synthesis of Mackinawite (FeSm) and its heterogeneous Fenton-like catalytic degradation performance of rhodamine B. Water Science and Technology, 2022, 85, 354-366.	2.5	5
4	Interfacial properties of sodium para-dimethyl alkylbenzene sulfonate in the presence of monovalent metal counterions at the oil-water interface. Journal of Dispersion Science and Technology, 2020, 41, 809-816.	2.4	4
5	Effects of resin and its subfractions with different molecular sizes and polarities on dynamic interfacial tensions of alkylbenzene sulfonate solutions. Chemical Physics, 2020, 535, 110761.	1.9	2
6	Theoretical model in cylindrical coordinates to describe dynamic interfacial tension determination with spinning drop tensiometry. Chemical Physics, 2019, 525, 110409.	1.9	3
7	The effects of electrolyte anions on lowering the interfacial tension of oil/ alkylbenzene sulfonates solution. Chemical Physics Letters, 2019, 728, 201-207.	2.6	6
8	The effect of NaOH on lowering interfacial tension of oil/alkylbenzene sulfonates solution. RSC Advances, 2018, 8, 6169-6177.	3.6	17
9	Effect of sodium dodecyl benzene sulfonate on morphology and structure of calcium silicate hydrate prepared via precipitation method. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 540, 249-255.	4.7	5
10	Different coating on electrospun nanofiber via layer-by-layer self-assembly for their photocatalytic activities. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 529, 425-433.	4.7	15
11	Fabrication and photocatalytic properties of water-stable Ag/PW12/PVA nanocomposites. Chemical Research in Chinese Universities, 2016, 32, 854-861.	2.6	5
12	Effect of Pr on copper-based catalysts for ethane oxychlorination. Catalysis Communications, 2013, 40, 42-46.	3.3	17
13	Facile synthesis of silver nanoparticles-modified PVA/H4SiW12O40 nanofibers-based electrospinning to enhance photocatalytic activity. Applied Surface Science, 2012, 258, 7105-7111.	6.1	32
14	Role of A (A = Ca, Mg, Sr) over Hexaaluminates La 0.8 A 0.2 NiAl 11019 for Carbon Dioxide Reforming of Methane. Industrial & Engineering Chemistry Research, 2011, 50, 10955-10961.	3.7	7
15	Effect of impregnation procedure of La2O3 precursor on copper-based catalysts for ethane oxychlorination. Catalysis Communications, 2011, 13, 22-25.	3.3	12
16	Zirconium-substituted Hexaaluminates La0.8Zr <i>x</i> NiAl11019â^' <i>δ</i> for Carbon Dioxide Reforming of Methane. Chemistry Letters, 2010, 39, 692-694.	1.3	4
17	Carbon Deposition on Hexaaluminate LaNiAl $<$ SUB $>$ 11 $<$ /SUB $>$ O $<$ SUB $>$ 19 $<$ I $>Î<II><ISUB> Catalyst with Low Nickel Content and Low Specific Surface Area. Chinese Journal of Catalysis, 2010, 31, 343-347.$	14.0	1
18	Effective Additives of A (Ce, Pr) in Modified Hexaaluminate La \times A1 \hat{a}^{*} x NiAl11019 for Carbon Dioxide Reforming of Methane. Catalysis Letters, 2009, 130, 246-253.	2.6	25

#	Article	IF	CITATION
19	The electronic effects of Pr on La $1\hat{a}$ °Pr NiAl 11019 for CO2 reforming of methane. Catalysis Communications, 2009, 10, 1816-1820.	3.3	35
20	Structure and Catalytic Properties of Magnesia-Supported Copper Salts of Molybdovanadophosphoric Acid. Journal of Physical Chemistry B, 2006, 110, 9831-9837.	2.6	8
21	Effect of kcl on cucl2/ \hat{I}^3 -al2o3 catalyst for oxychlorination of ethane. Reaction Kinetics and Catalysis Letters, 2006, 88, 315-324.	0.6	27
22	Transition metal substituted tungstophosphoric compound catalyzed oxidation of hexanol to hexanal with hydrogen peroxide. Reaction Kinetics and Catalysis Letters, 2005, 85, 57-64.	0.6	2
23	Dehydrogenation activity and structure of polyaniline supported heteropolyacid catalysts. Reaction Kinetics and Catalysis Letters, 2003, 79, 295-302.	0.6	3
24	Studies on Carbon Deposition on Hexaaluminate LaNiAl11019 Catalysts during CO2 Reforming of Methane. Kinetics and Catalysis, 2002, 43, 522-527.	1.0	17
25	Oxidative Dehydrogenation of Propane to Propene over Barium Promoted Ni-Mo-O Catalyst. Reaction Kinetics and Catalysis Letters, 2001, 73, 199-208.	0.6	15