Robert I Woodward

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4802012/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mode-locked mid-infrared fiber systems. , 2022, , 647-684.		0
2	Modeling mid-infrared fiber laser systems. , 2022, , 743-801.		0
3	Self-tuning quantum key distribution transmitter based on a genetic algorithm. , 2022, , .		0
4	Gigahertz measurement-device-independent quantum key distribution using directly modulated lasers. Npj Quantum Information, 2021, 7, .	6.7	33
5	Real-time operation of a multi-rate, multi-protocol quantum key distribution transmitter. Optica, 2021, 8, 911.	9.3	16
6	Advanced Laser Technology for Quantum Communications (Tutorial Review). Advanced Quantum Technologies, 2021, 4, 2100062.	3.9	25
7	A photonic integrated quantum secure communication system. Nature Photonics, 2021, 15, 850-856.	31.4	90
8	A general ink formulation of 2D crystals for wafer-scale inkjet printing. Science Advances, 2020, 6, eaba5029.	10.3	89
9	Novel Near-infrared Pump Wavelengths for Dysprosium Fiber Lasers. Journal of Lightwave Technology, 2020, 38, 5801-5808.	4.6	17
10	Dysprosium Midâ€Infrared Lasers: Current Status and Future Prospects. Laser and Photonics Reviews, 2020, 14, 1900195.	8.7	36
11	Mode-locked and tunable fiber laser at the 3.5  µm band using frequency-shifted feedback. Optics Letters, 2020, 45, 224.	3.3	44
12	Near-infrared Pump Wavelengths for High Efficiency Dysprosium Doped Mid-infrared Fibre Lasers. , 2020, , .		0
13	Q-switched and Mode-locked 3.5 μm Fiber Laser. , 2020, , .		0
14	Mid-infrared fiber sources for real-time biomedical sensing. , 2019, , .		0
15	Generating Picosecond Pulses from Mid-Infrared Fiber Lasers using Frequency-Shifted Feedback. , 2019, , .		0
16	High Energy Pulses from a Wavelength Tunable Dy:ZBLAN Mid-Infrared Fiber Laser. , 2019, , .		0
17	Swept-wavelength mid-infrared fiber laser for real-time ammonia gas sensing. APL Photonics, 2019, 4, 020801.	5.7	64
18	Q-switched Dy:ZBLAN fiber lasers beyond 3 μm: comparison of pulse generation using acousto-optic modulation and inkjet-printed black phosphorus. Optics Express, 2019, 27, 15032.	3.4	54

Robert I Woodward

#	Article	IF	CITATIONS
19	Optimized laser-written ZBLAN fiber Bragg gratings with high reflectivity and low loss. Optics Letters, 2019, 44, 423.	3.3	29
20	Ultrafast mid-infrared fiber laser mode-locked using frequency-shifted feedback. Optics Letters, 2019, 44, 1698.	3.3	24
21	Electronically tunable mid-infrared mode-locked dysprosium fiber laser with over 330 nm tunability. , 2019, , .		0
22	Dispersion engineering of mode-locked fibre lasers. Journal of Optics (United Kingdom), 2018, 20, 033002.	2.2	65
23	Mode-locked dysprosium fiber laser: Picosecond pulse generation from 2.97 to 3.30 μm. APL Photonics, 2018, 3, .	5.7	69
24	In-fiber polarizer based on a 45-degree tilted fluoride fiber Bragg grating for mid-infrared fiber laser technology. OSA Continuum, 2018, 1, 56.	1.8	21
25	Watt-level dysprosium fiber laser at 315  μm with 73% slope efficiency. Optics Letters, 2018, 43, 1471.	3.3	80
26	In-Fibre Polarizer for Mid-Infrared Fibre Lasers Based on 45° Tilted Fluoride Fibre Bragg Grating. , 2018, , .		1
27	Dysprosium-doped ZBLAN fiber laser tunable from 28  μm to 34  μm, pumped at 17 â€% 971.	ي ي ي ي ي ي ي ي ي ي ي ئ ر س . Op	otics Letters 106
28	Emission beyond 4  μm and mid-infrared lasing in a dysprosium-doped indium fluoride (InF _{3fiber. Optics Letters, 2018, 43, 1926.}	>) 3.3	86
29	Few-Cycle Pulse Generation from a 3 µm Fiber Laser. , 2018, , .		0
30	Versatile mid-infrared mode-locked fiber laser, electronically tunable from 2.97 to 3.30 ŵm. , 2018, , .		0
31	Emission Beyond 4 $\hat{A}\mu m$ and Mid-infrared Lasing from a Dy3+:InF3 Fiber. , 2018, , .		0
32	High-efficiency watt-level mid-infrared fiber lasers beyond 3 $\hat{A}\mu m$ using Dy:ZBLAN. , 2018, , .		0
33	Towards diode-pumped mid-infrared praseodymium-ytterbium-doped fluoride fiber lasers. , 2018, , .		1
34	Near infrared pumped full gain bandwidth tunable 3 micron dysprosium fiber laser. , 2018, , .		1
35	Characterization of the second- and third-order nonlinear optical susceptibilities of monolayer MoS ₂ using multiphoton microscopy. 2D Materials, 2017, 4, 011006.	4.4	147
36	Black phosphorus ink formulation for inkjet printing of optoelectronics and photonics. Nature Communications, 2017, 8, 278.	12.8	311

ROBERT I WOODWARD

#	Article	IF	CITATIONS
37	Direct inscription of Bragg gratings into coated fluoride fibers for widely tunable and robust mid-infrared lasers. Optics Express, 2017, 25, 30013.	3.4	35
38	Generation of 70-fs pulses at 286  î¼m from a mid-infrared fiber laser. Optics Letters, 2017, 42, 4893.	3.3	49
39	Genetic algorithm-based control of birefringent filtering for self-tuning, self-pulsing fiber lasers. Optics Letters, 2017, 42, 2952.	3.3	37
40	Self-Optimizing Mode-Locked Laser using a Genetic Algorithm. , 2016, , .		1
41	Surfactantâ€aided exfoliation of molybdenum disulfide for ultrafast pulse generation through edgeâ€state saturable absorption. Physica Status Solidi (B): Basic Research, 2016, 253, 911-917.	1.5	29
42	Towards â€~smart lasers': self-optimisation of an ultrafast pulse source using a genetic algorithm. Scientific Reports, 2016, 6, 37616.	3.3	100
43	Dark solitons in laser radiation build-up dynamics. Physical Review E, 2016, 93, 032221.	2.1	19
44	Characterization of the Nonlinear Susceptibility of Monolayer MoS2 using Second- and Third-Harmonic Generation Microscopy. , 2016, , .		2
45	2D Saturable Absorbers for Fibre Lasers. Applied Sciences (Switzerland), 2015, 5, 1440-1456.	2.5	198
46	Solution processed MoS2-PVA composite for sub-bandgap mode-locking of a wideband tunable ultrafast Er:fiber laser. Nano Research, 2015, 8, 1522-1534.	10.4	256
47	Fiber grating compression of giant-chirped nanosecond pulses from an ultra-long nanotube mode-locked fiber laser. Optics Letters, 2015, 40, 387.	3.3	28
48	Optical nonlinearity of few-layer MoS2 devices and applications in short-pulse laser technology. , 2015, , .		7
49	Few-layer MoS_2 saturable absorbers for short-pulse laser technology: current status and future perspectives [Invited]. Photonics Research, 2015, 3, A30.	7.0	185
50	Wideband saturable absorption in few-layer molybdenum diselenide (MoSe_2) for Q-switching Yb-, Er- and Tm-doped fiber lasers. Optics Express, 2015, 23, 20051.	3.4	252
51	Fiber-integrated 780 nm source for visible parametric generation. Optics Express, 2014, 22, 29726.	3.4	7
52	Tunable Q-switched fiber laser based on saturable edge-state absorption in few-layer molybdenum disulfide (MoS_2). Optics Express, 2014, 22, 31113.	3.4	310
53	Scalar Nanosecond Pulse Generation in a Nanotube Mode-Locked Environmentally Stable Fiber Laser. IEEE Photonics Technology Letters, 2014, 26, 1672-1675.	2.5	24

#	Article	IF	CITATIONS
55	Graphene-based passively mode-locked bidirectional fiber ring laser. Optics Express, 2014, 22, 4539.	3.4	30
56	Stimulated Brillouin scattering of visible light in small-core photonic crystal fibers. Optics Letters, 2014, 39, 2330.	3.3	21
57	Nanotube mode-locked, low repetition rate pulse source for fiber-based supercontinuum generation at low average pump power. , 2014, , .		1
58	Visible Light Stimulated Brillouin Scattering in Small-Core Photonic Crystal Fibers. , 2014, , .		0