Kaushik Banerjee

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4801894/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Rapid and quantitative analysis of aflatoxin M1 from milk using atmospheric pressure — matrix assisted laser desorption/ionization (AP-MALDI)-triple quadrupole selected reaction monitoring. Journal of AOAC INTERNATIONAL, 2022, , .	1.5	3
2	Determination of Highly Polar and Ionic Pesticides in Grape and Pomegranate Using Liquid Chromatography Tandem Mass Spectrometry. Journal of AOAC INTERNATIONAL, 2022, 105, 1341-1349.	1.5	3
3	Producing Crops without Mancozeb? Perspectives on Recent Regulatory Dilemmas and Ways Out. ACS Agricultural Science and Technology, 2022, 2, 272-275.	2.3	3
4	Multiresidue analysis of pesticides, polyaromatic hydrocarbons and polychlorinated biphenyls in poultry meat and chicken eggs by GC-MS/MS: method development and validation. Journal of Environmental Science and Health - Part B Pesticides, Food Contaminants, and Agricultural Wastes, 2022, 57, 263-283.	1.5	4
5	Automation in Pesticide Residue Analysis in Foods: A Step toward Smarter Laboratories and Green Chemistry. ACS Agricultural Science and Technology, 2022, 2, 426-429.	2.3	4
6	Analysis of aflatoxins and ochratoxin a in chilli powder using ultrahigh performance liquid chromatography with fluorescence detection and tandem mass spectrometry. Mycotoxin Research, 2022, 38, 193-203.	2.3	10
7	Multi-mycotoxin analysis method using liquid chromatography with tandem mass spectrometry and fluorescence detection in Indian medicinal herbs: Development and validation. Journal of Chromatography A, 2022, 1677, 463310.	3.7	6
8	Single-Laboratory Validation of a Multi-residue Method for Simultaneous Analysis of Multi-class Pesticides in Turmeric by Liquid Chromatography Tandem Mass Spectrometry. Journal of AOAC INTERNATIONAL, 2021, 104, 148-156.	1.5	0
9	Decontamination of aflatoxin B1 in peanuts using various cooking methods. Journal of Food Science and Technology, 2021, 58, 2547-2554.	2.8	9
10	Coupling the high-resolution LC–MS characterisation of the phenolic compounds with the antimicrobial and antibiofilm properties of helencha (Enydra fluctuans Lour.). Journal of Food Science and Technology, 2021, 58, 4755-4765.	2.8	2
11	Development and validation of a liquid chromatographic tandem mass spectrometric method for the analysis of patulin in apple and apple juice. Mycotoxin Research, 2021, 37, 119-127.	2.3	7
12	Pharmaceuticals and personal care products in aqueous urban environment of western India. Water and Environment Journal, 2021, 35, 1302-1312.	2.2	11
13	High-Throughput Analysis of Aflatoxins in Cereals, Nuts, and Processed Products Involving Automated Immunoaffinity Cleanup and Inline HPLC–Fluorescence Detection. Journal of AOAC INTERNATIONAL, 2021, 104, 1526-1532.	1.5	10
14	Multiclass pesticide residue analysis in tobacco (Nicotiana tabacum) using high performance liquid chromatography-high resolution (Orbitrap) mass spectrometry: A simultaneous screening and quantitative method. Journal of Chromatography A, 2021, 1648, 462208.	3.7	14
15	Development and validation of an analytical method for the multiresidue analysis of pesticides in sesame seeds using liquid- and gas chromatography with tandem mass spectrometry. Journal of Chromatography A, 2021, 1652, 462346.	3.7	15
16	Bioefficacy, residue dynamics and dietary risk assessment of gibberellic acid in improving the potential yield of tomato (Solanum lycopersicum L.). Environmental Monitoring and Assessment, 2021, 193, 652.	2.7	1
17	Introducing a low-cost jute activated carbon as a novel cleanup agent in multiclass pesticide residue analysis using gas chromatography tandem mass spectrometry. Journal of Cleaner Production, 2021, 319, 128696.	9.3	9
18	Dual role of a dedicated GAPDH in the biosynthesis of volatile and non-volatile metabolites- novel insights into the regulation of secondary metabolism in Trichoderma virens. Microbiological Research, 2021, 253, 126862.	5.3	9

KAUSHIK BANERJEE

#	Article	IF	CITATIONS
19	Profiling of polyphenols in phalsa (Grewia asiatica L) fruits based on liquid chromatography high resolution mass spectrometry. Journal of Food Science and Technology, 2020, 57, 606-616.	2.8	15
20	Development and validation of a multiresidue method for pesticides and selected veterinary drugs in animal feed using liquid- and gas chromatography with tandem mass spectrometry. Journal of Chromatography A, 2020, 1627, 461416.	3.7	19
21	Multi-residue Analysis of Pesticides in Turmeric (Powder and Rhizome) Using Gas Chromatography Tandem Mass Spectrometry. Journal of AOAC INTERNATIONAL, 2020, 103, 1498-1511.	1.5	6
22	A Review: Sample Preparation and Chromatographic Technologies for Detection of Aflatoxins in Foods. Toxins, 2020, 12, 539.	3.4	86
23	High Throughput Residue Analysis of Indaziflam and its Metabolites in Palm Oil Using Liquid Chromatography–Tandem Mass Spectrometry. Journal of AOAC INTERNATIONAL, 2020, 103, 1237-1242.	1.5	3
24	Development and Validation of a Method for Direct Analysis of Aflatoxins in Animal Feeds by Ultra-High-Performance Liquid Chromatography with Fluorescence Detection. Journal of AOAC INTERNATIONAL, 2020, 103, 940-945.	1.5	10
25	Antityrosinase Activity of Combretum micranthum, Euphorbia hirta and Anacardium occidentale Plants: Ultrasound Assisted Extraction Optimization and Profiling of Associated Predominant Metabolites. Molecules, 2020, 25, 2684.	3.8	7
26	Comparative evaluation of different Allium accessions for allicin and other allyl thiosulphinates. Industrial Crops and Products, 2020, 147, 112215.	5.2	8
27	Anthocyanin Profiling Using UV-Vis Spectroscopy and Liquid Chromatography Mass Spectrometry. Journal of AOAC INTERNATIONAL, 2020, 103, 23-39.	1.5	56
28	Multiresidue Analysis of Pesticides in Moringa Pods by GC-MS/MS and LC-MS/MS. Journal of AOAC INTERNATIONAL, 2020, 103, 1486-1497.	1.5	9
29	Antioxidant Potential of Indian Eggplant: Comparison Among White, Purple and Green Genotypes Using Chemometrics. Agricultural Research, 2019, 8, 9-20.	1.7	16
30	A unified approach for high-throughput quantitative analysis of the residues of multi-class veterinary drugs and pesticides in bovine milk using LC-MS/MS and GC–MS/MS. Food Chemistry, 2019, 272, 292-305.	8.2	88
31	Improved analysis of captan, tetrahydrophthalimide, captafol, folpet, phthalimide, and iprodione in fruits and vegetables by liquid chromatography tandem mass spectrometry. Food Chemistry, 2019, 301, 125216.	8.2	17
32	Simultaneous Direct Analysis of Aflatoxins and Ochratoxin A in Cereals and Their Processed Products by Ultra-High Performance Liquid Chromatography with Fluorescence Detection. Journal of AOAC INTERNATIONAL, 2019, 102, 1666-1672.	1.5	18
33	Multi-residue analysis of captan, captafol, folpet, and iprodione in cereals using liquid chromatography with tandem mass spectrometry. Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment, 2019, 36, 1688-1695.	2.3	4
34	Targeted phenolic profiling of Sauvignon blanc and Shiraz grapes grown in two regions of India by liquid chromatography-tandem mass spectrometry. Journal of Food Science and Technology, 2019, 56, 3300-3312.	2.8	8
35	Determination of Paraquat Residues in Palm Oil by Highâ€Performance Liquid Chromatography with UV and Tandem Mass Spectrometry. European Journal of Lipid Science and Technology, 2019, 121, 1900092.	1.5	9
36	Antioxidant potential of commonly consumed underutilized leguminous vegetables. International Journal of Vegetable Science, 2019, 25, 362-372.	1.3	19

Kaushik Banerjee

#	Article	IF	CITATIONS
37	High-Resolution LCMS Profiling of Phenolic Compounds of Indian Black Carrot and Evaluation of Its Effect on Antioxidant Defense and Glucose Metabolism in Animal Model. Agricultural Research, 2019, 8, 481-489.	1.7	5
38	High throughput residue analysis of paraquat and diquat involving hydrophilic interaction liquid chromatographic separation and mass spectrometric determination. Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment, 2019, 36, 120-130.	2.3	12
39	Antioxidant Potentiality and Mineral Content of Summer Season Leafy Greens: Comparison at Mature and Microgreen Stages Using Chemometric. Agricultural Research, 2019, 8, 165-175.	1.7	33
40	The Viridin Biosynthesis Gene Cluster of <i>Trichoderma virens</i> and Its Conservancy in the Bat Whiteâ€Nose Fungus <i>Pseudogymnoascus destructans</i> . ChemistrySelect, 2018, 3, 1289-1293.	1.5	15
41	High-sensitivity direct analysis of aflatoxins in peanuts and cereal matrices by ultra-performance liquid chromatography with fluorescence detection involving a large volume flow cell. Journal of Environmental Science and Health - Part B Pesticides, Food Contaminants, and Agricultural Wastes, 2018. 53. 255-260.	1.5	20
42	Optimization of multi-residue method for targeted screening and quantitation of 243 pesticide residues in cardamom (Elettaria cardamomum) by gas chromatography tandem mass spectrometry (GC-MS/MS) analysis. Chemosphere, 2018, 193, 447-453.	8.2	50
43	Analysis of pesticide residues in tuber crops using pressurised liquid extraction and gas chromatography-tandem mass spectrometry. Food Chemistry, 2018, 241, 250-257.	8.2	32
44	A simultaneous screening and quantitative method for the multiresidue analysis of pesticides in spices using ultra-high performance liquid chromatography-high resolution (Orbitrap) mass spectrometry. Journal of Chromatography A, 2018, 1532, 105-111.	3.7	53
45	Comprehensive multiresidue determination of pesticides and plant growth regulators in grapevine leaves using liquid- and gas chromatography with tandem mass spectrometry. Journal of Chromatography A, 2018, 1579, 73-82.	3.7	23
46	Field bioefficacy, phytotoxicity and residue dynamics of the insecticide flonicamid (50 WG) in okra [Abelmoschus esculenta (L) Moench]. Crop Protection, 2017, 94, 13-19.	2.1	23
47	Genomicsâ€Driven Discovery of the Gliovirin Biosynthesis Gene Cluster in the Plant Beneficial Fungus <i>Trichoderma Virens</i> . ChemistrySelect, 2017, 2, 3347-3352.	1.5	32
48	Optimization and Validation of a Residue Analysis Method for Glyphosate, Glufosinate, and Their Metabolites in Plant Matrixes by Liquid Chromatography with Tandem Mass Spectrometry. Journal of AOAC INTERNATIONAL, 2017, 100, 631-639.	1.5	23
49	Multiresidue analysis of multiclass pesticides and polyaromatic hydrocarbons in fatty fish by gas chromatography tandem mass spectrometry and evaluation of matrix effect. Food Chemistry, 2016, 196, 1-8.	8.2	78
50	Quantitative Screening of Agrochemical Residues in Fruits and Vegetables by Buffered Ethyl Acetate Extraction and LC-MS/MS Analysis. Journal of Agricultural and Food Chemistry, 2015, 63, 4449-4456.	5.2	47
51	Rapid and sensitive multiresidue analysis of pesticides in tobacco using low pressure and traditional gas chromatography tandem mass spectrometry. Journal of Chromatography A, 2015, 1418, 228-232.	3.7	14
52	Evaluation of bioactive properties of Indian carrot (Daucus carota L.): A chemometric approach. Food Research International, 2014, 60, 76-85.	6.2	62
53	Assessment of organochlorine pesticide residues in Indian flue-cured tobacco with gas chromatography-single quadrupole mass spectrometer. Environmental Monitoring and Assessment, 2014, 186, 5069-5075.	2.7	11
54	Optimization of a sample preparation method for multiresidue analysis of pesticides in tobacco by single and multi-dimensional gas chromatography-mass spectrometry. Journal of Chromatography A, 2014, 1343, 200-206.	3.7	21

Kaushik Banerjee

#	Article	IF	CITATIONS
55	Dissipation kinetics of forchlorfenuron, 6-benzyl aminopurine, gibberellic acid and ethephon residues in table grapes (Vitis vinifera). Food Chemistry, 2013, 141, 4208-4214.	8.2	29
56	Optimization of gas chromatography–single quadrupole mass spectrometry conditions for multiresidue analysis of pesticides in grapes in compliance to EU-MRLs. Food Chemistry, 2013, 138, 600-607.	8.2	37
57	Ensuring selectivity and sensitivity by timed- and ultra-selective reaction monitoring during gas chromatography–tandem mass spectrometric determination of pesticides. Journal of Chromatography A, 2013, 1318, 226-233.	3.7	13
58	Multiresidue determination of 375 organic contaminants including pesticides, polychlorinated biphenyls and polyaromatic hydrocarbons in fruits and vegetables by gas chromatography–triple quadrupole mass spectrometry with introduction of semi-quantification approach. Journal of Chromatography A, 2012, 1270, 283-295.	3.7	68
59	Food safety evaluation of buprofezin, dimethoate and imidacloprid residues in pomegranate. Food Chemistry, 2012, 131, 787-795.	8.2	44
60	Evaluation of garlic ecotypes for allicin and other allyl thiosulphinates. Food Chemistry, 2011, 128, 988-996.	8.2	41
61	Multiresidue Analysis of Plant Growth Regulators in Grapes by Triple Quadrupole and Quadrupole–Time of Flight-Based Liquid Chromatography/Mass Spectrometry. Journal of AOAC INTERNATIONAL, 2011, 94, 1715-1721.	1.5	18
62	Optimization of two-dimensional gas chromatography time-of-flight mass spectrometry for separation and estimation of the residues of 160 pesticides and 25 persistent organic pollutants in grape and wine. Journal of Chromatography A, 2010, 1217, 3881-3889.	3.7	60
63	Multiresidue Analysis of 50 Pesticides in Grape, Pomegranate, and Mango by Gas Chromatographyâ^'Ion Trap Mass Spectrometry. Journal of Agricultural and Food Chemistry, 2010, 58, 1447-1454.	5.2	54
64	Degradation kinetics and safety evaluation of buprofezin residues in grape (Vitis viniferaL.) and three different soils of India. Pest Management Science, 2009, 65, 183-188.	3.4	25
65	Multiresidue analysis of 83 pesticides and 12 dioxin-like polychlorinated biphenyls in wine by gas chromatography–time-of-flight mass spectrometry. Journal of Chromatography A, 2009, 1216, 2307-2319.	3.7	58
66	Single-Laboratory Validation and Uncertainty Analysis of 82 Pesticides Determined in Pomegranate, Apple, and Orange by Ethyl Acetate Extraction and Liquid Chromatography/Tandem Mass Spectrometry. Journal of AOAC INTERNATIONAL, 2008, 91, 1435-1445.	1.5	25
67	Validation and uncertainty analysis of a multi-residue method for pesticides in grapes using ethyl acetate extraction and liquid chromatography–tandem mass spectrometry. Journal of Chromatography A, 2007, 1173, 98-109.	3.7	191
68	Regulatory landscape of risk assessment of pesticide residues in processed foods in India: a perspective. Journal of Food Science and Technology, 0, , 1.	2.8	2