Inna P Tsypysheva

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4801707/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Synthesis and specific nootropic activity of (–)-cytisine derivatives with carbamide and thiocarbamide moieties in their structure. Chemistry of Natural Compounds, 2012, 48, 629-634.	0.2	30
2	Synthesis and evaluation of camphor and cytisine-based cyanopyrrolidines as DPP-IV inhibitors for the treatment of type 2 diabetes mellitus. Bioorganic and Medicinal Chemistry, 2018, 26, 4402-4409.	1.4	23
3	Synthesis and neuropharmacological activity of N-1-adamantylcytisine-12-carbamide and its 12-thiocarbonyl analog. Chemistry of Natural Compounds, 2013, 49, 707-711.	0.2	19
4	Synthesis of 3- and 5-Amino Derivatives of Methylcytisine. Chemistry of Natural Compounds, 2013, 49, 902-906.	0.2	17
5	Search for compounds with antiviral activity among synthetic (-)-cytisine derivatives. Chemistry of Natural Compounds, 2013, 48, 1042-1046.	0.2	16
6	Stereochemical Aspects of the Beckman Rearrangement of Oximes of Levoglucosenone and Its Dihydro Derivative. Enantioselective Synthesis of (+)-Â-Pelargonolactone. Chemistry of Natural Compounds, 2003, 39, 563-568.	0.2	15
7	Antiviral activity of amides and carboxamides of quinolizidine alkaloid (â~')-cytisine against human influenza virus A (H1N1) and parainfluenza virus type 3. Natural Product Research, 2021, 35, 4256-4264.	1.0	15
8	Synthesis of Diels–Alder adducts of the quinolizidine alkaloids N-methylcytisine, (â^')-leontidine, and (â^')-thermopsine with N-phenylmaleimide. Tetrahedron: Asymmetry, 2013, 24, 1318-1323.	1.8	14
9	Inversion of diastereoselectivity under high pressure conditions: Diels–Alder reactions of 12-N-substituted derivatives of (â^')-cytisine with N-phenylmaleimide. Tetrahedron: Asymmetry, 2015, 26, 732-737.	1.8	14
10	New 12-N-β-Hydroxyethylcytisine Derivatives with Potential Antiarrhythmic Activity. Chemistry of Natural Compounds, 2014, 50, 333-336.	0.2	13
11	New (â^')â^'Cytisine Derivatives with Nootropic Activity. Pharmaceutical Chemistry Journal, 2015, 49, 301-303.	0.3	12
12	Stereochemical differentiation in the reactions of organometallic reagents with levoglucosenone and some of its dihydro derivatives. Russian Chemical Bulletin, 2000, 49, 1237-1240.	0.4	11
13	Synthesis and Nootropic Activity of new 3-Amino-12-N-Methylcytisine Derivatives. Chemistry of Natural Compounds, 2015, 51, 910-915.	0.2	11
14	Thermodynamically controlled Diels–Alder reaction of 12-N-methylcytisine: A DFT study. Journal of Theoretical and Computational Chemistry, 2014, 13, 1450048.	1.8	10
15	Aza-Michael reaction of 12-N-carboxamide of (–)-cytisine under high pressure conditions. Natural Product Research, 2015, 29, 141-148.	1.0	10
16	Diels-Alder adducts of 3-N-substituted derivatives of (â~')-Cytisine as influenza A/H1N1 virus inhibitors; stereodifferentiation of antiviral properties and preliminary assessment of action mechanism. Tetrahedron, 2019, 75, 2933-2943.	1.0	10
17	Synthesis and antiviral evaluation of cytisine derivatives against dengue virus types 1 and 2. Bioorganic and Medicinal Chemistry Letters, 2021, 54, 128437.	1.0	8
18	Synthesis and Cytotoxic Activity of Conjugates of (–)-Cytisine and Thermopsin Amine Derivatives with 1,3-Dimethyl-5-Formyluracil. Chemistry of Natural Compounds, 2018, 54, 938-946.	0.2	7

#	Article	IF	CITATIONS
19	Variation of spacer type and topology of phenyl moiety in 2-pyridone core of 4-oxo-3- <i>N</i> -methylcytisine; effect of synthesized compounds on rat's behavior in conditioned passive avoidance reflex (CPAR) test. Natural Product Research, 2021, 35, 207-215.	1.0	7
20	Cyclopentane Ring Fusion to Â-lodo and Â-Bromo Levoglucosenone Derivatives with 2,2-Dimethyl-1,3-dinitropropane. Russian Journal of Organic Chemistry, 2003, 39, 1055-1056.	0.3	6
21	Synthesis of 2-amino derivatives of levoglucosenone. Chemistry of Natural Compounds, 2004, 40, 521-525.	0.2	6
22	Amines, Amides, and Thio- and Carboxamides of (–)-Cytisine as Nfat Transcription Factor Modulators. Chemistry of Natural Compounds, 2014, 50, 498-502.	0.2	6
23	APPROACHES TO FORMATION OF THE ELEUTHESIDE NUCLEUS BASED ON (+)- δ-CADINOL. Chemistry of Natural Compounds, 2001, 37, 490-492.	0.2	5
24	Nootropic Activity of a Novel (-)-Cytisine Derivative (3aR,4S,8S,12R,) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 547 Tc [1,5]Diazocine-1,3,5(4H)-Trione. Bulletin of Experimental Biology and Medicine, 2018, 164, 434-438.	l (12aS,12 0.3	2bR)-10-Meth 5
25	Synthesis of conjugates of (â^')-cytisine derivatives with ferrocene-1-carbaldehyde and their cytotoxicity against HEK293, Jurkat, A549, MCF-7 and SH-SY5Y cells. Tetrahedron, 2020, 76, 130902.	1.0	5
26	Reaction of Iodolevoglucosenone with Ethyl Cyanoacetate under Michael Reaction Conditions. Russian Journal of Organic Chemistry, 2001, 37, 1088-1092.	0.3	4
27	Title is missing!. Chemistry of Natural Compounds, 2002, 38, 154-160.	0.2	4
28	Synthesis of Several 3,5- and 3-Substituted Thermopsine Derivatives. Chemistry of Natural Compounds, 2015, 51, 805-807.	0.2	4
29	Three (―)-cytisine derivatives and 1-hydroxyquinopimaric acid as acetylcholinesterase inhibitors. Toxicology Reports, 2019, 6, 862-868.	1.6	4
30	Involvement of Chaperone Sigma1R in the Anxiolytic Effect of Fabomotizole. International Journal of Molecular Sciences, 2021, 22, 5455.	1.8	4
31	Anti-Inflammatory Activity of Novel 12-N-methylcytisine Derivatives. Anti-Inflammatory and Anti-Allergy Agents in Medicinal Chemistry, 2017, 16, 112-122.	1.1	4
32	Diastereoselective addition of organomanganese compounds to chiral polyalkoxyaldehydes. Russian Chemical Bulletin, 1993, 42, 1078-1082.	0.4	3
33	(+)-δ-Cadinol as a promising starting compound in the synthesis of eleuthesides. Russian Chemical Bulletin, 2001, 50, 1699-1701.	0.4	3
34	Ozonolytic Hydroxylation of 3-Benzyloxy-(+)-α-Cadinol. Russian Journal of Organic Chemistry, 2001, 37, 1666-1667.	0.3	3
35	Synthesis and Molecular Structure of N-{(1R,5S)-3-Methyl-8-Oxo-1,3,4,5,6,8-Hexahydro-2H-1,5-Methanopyrido[1,2-α] [1,5]Diazocin-9-yl}Acetamide. Chemistry of Natural Compounds, 2014, 50, 581-582.	0.2	3
36	Search for Nootropic Substances Based on Molecular Docking of Methanepyrido[1,2-a][1, 5]Diazocin[(-)-Cytisine] Derivatives to the Active Center of the Nicotinic Acetylcholine Receptor. Pharmaceutical Chemistry Journal, 2015, 49, 582-586.	0.3	3

INNA P TSYPYSHEVA

#	Article	IF	CITATIONS
37	Molecular and crystal structure of (1R,5S)-8-oxo-1,5,6,8-tetrahydro-2H-1,5-methanopyrido[1,2-a][1,5]diazocine-3(4H)-carboxamide and (1R,5S)-8-OXO-1,5,6,8-tetrahydro-2H-1,5-methanopyrido[1,2-a][1,5]diazocine-3(4H)-thiocarboxamide. Journal of Structural Chemistry, 2015, 56, 188-190.	0.3	3
38	Crystal and Molecular Structures of Methylcytisine Nitro-Derivatives. Pharmaceutical Chemistry Journal, 2017, 50, 826-832.	0.3	3
39	Direct formylation of 2-pyridone core of 3-N-methylcytisine via Duff reaction; synthesis of 9-enyl, 9-ynyl and 9-imino derivatives. Natural Product Research, 2019, 33, 1897-1902.	1.0	3
40	A Novel Approach to Key Synthons in the Synthesis of Eleuthosides. Doklady Chemistry, 2002, 382, 37-40.	0.2	2
41	Functionalization of the Allyl Fragment in (+)-Â-Cadinol. Russian Journal of Organic Chemistry, 2004, 40, 337-345.	0.3	2
42	Luminescent characterization of interaction efficiency between (â^')-cytisine and amino acids an indicator of anti-inflammatory of some 12-N-substituted (â^')-cytisine derivatives. Journal of Photochemistry and Photobiology A: Chemistry, 2017, 344, 192-198.	2.0	2
43	Synthesis of Methylcytisine 9-Thiocarboxamides. Chemistry of Natural Compounds, 2019, 55, 908-913.	0.2	2
44	Synthesis of Several Cytisine Derivatives and their Cytotoxicities against A431, A375, and HCT 116 Tumor Cell Lines. Chemistry of Natural Compounds, 2020, 56, 892-895.	0.2	2
45	Stereospecific synthesis of a key synthon for faranal — The trail pheromone of the antMonomorium pharaonis. Chemistry of Natural Compounds, 1993, 29, 397-400.	0.2	1
46	Activity of Thermopsis schischkinii Alkaloids Against Influenza A(H1N1)pdm09 Virus. Chemistry of Natural Compounds, 2015, 51, 1003-1005.	0.2	1
47	lodination of Cytisine and Methylcytisine Alkaloids. Chemistry of Natural Compounds, 2019, 55, 1101-1105.	0.2	1
48	Synthesis of Guanidine Derivatives of Methylcytisine. Chemistry of Natural Compounds, 2019, 55, 1110-1114.	0.2	1
49	Molecular and Crystal Structure of N-Allylamide-9-Nitrocytisine. Pharmaceutical Chemistry Journal, 2020, 54, 654-658.	0.3	1
50	Crystal structure features of nitro derivatives of methylcytizine and their relationship with second-order nonlinear optical susceptibility. Russian Chemical Bulletin, 2020, 69, 148-157.	0.4	1
51	Thionation of quinolizidine alkaloids and their derivatives via Lawesson's reagent. Natural Product Research, 2022, 36, 3538-3543.	1.0	1
52	ϴϿϗϿϳϿϧϿϳϿ·ϿϛϿ·ϴ;ϿϗϿ·Ͽ·Ͽ·ϿʹϿϿϼϗϿͼϿϿʹϿʹϿʹϿʹϿʹϿʹϿʹϿʹϿʹϿʹϿʹϿʹϿʹϿʹϿʹϿʹϿʹϿʹ	СОДЕE)Ð-ÐÐÐ~Ð~ Ð
53	Diastereoselective addition of organomanganese compounds to ?-alkoxysubstituted propanals. Russian Chemical Bulletin, 1993, 42, 161-165.	0.4	0

54	2,4-diazapenta-1,4-dienes in the synthesis of 2,6-diaryl-3,5-dinitropiperidines. Russian Journal of Organic Chemistry, 2006, 42, 1848-1850.	0.3	0
----	--	-----	---

#	Article	IF	CITATIONS
55	Synthesis and molecular structure of methyl (3aS,4R,7aR,8aS,8bR,8cS)-8,8-dimethyl-1,3,7-trioxo-2-phenyl-2,3,3a,4,7,7a,8,8a,8b,8c-decahydro-1H-cyclopropa [4, 5]pyrano[3,2-e]isoindol-4-carboxylate. Chemistry of Natural Compounds, 2012, 47, 1020-1022.	0.2	0
56	Carboxamides of the Alkaloid Dihydrothalsimine and Their Cytotoxicities. Chemistry of Natural Compounds, 2018, 54, 619-621.	0.2	0
57	Conjugates of 9- and 11-Halo-Substituted Cytisines with 1′-N-Methylurocanic Acid. Chemistry of Natural Compounds, 2019, 55, 1106-1109.	0.2	0
58	Synthesis of Urea Derivatives of 9-Aminomethylcytisine. Chemistry of Natural Compounds, 2020, 56, 1183-1185.	0.2	0
59	ϴΫϴϴžϴ¢ϴʹϴʹϴžϴʹϴϿϴϼέϴϳϴϴϴʹ·ϴϿͽϴ¢ϴʹϿʹϴϴžϴϳϴ¢ϴʹͺϴϳϴέϴœϴœϴ« ϴϴͻϴͽϴͽϽͽϿͻϿʹϿϿϿϿʹϴϔϴͽϽϒ	T ORI A D~ E)• Е ОТÐ
60	DROUGHT INFLUENCE ON THE CONTENT AND COMPOSITION OF ALKALOIDS FROM SEEDS OF THE CHAMAECYTISUS RUTHENICUS (FISCH. EX WOLOSZCZ.) KLASKOVA, GROWING AT THE MOUNTAIN-FORESTS ZONE OF SOUTHERN URALS. Khimiya Rastitel'nogo Syr'ya, 2018, , 169-176.	0.0	0