MaÅ,gorzata Nattich

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4801701/publications.pdf

Version: 2024-02-01

42 papers 1,018 citations

430874 18 h-index 31 g-index

42 all docs 42 docs citations

times ranked

42

1096 citing authors

#	Article	IF	CITATIONS
1	Nanoparticle and bioparticle deposition kinetics. Advances in Colloid and Interface Science, 2022, 302, 102630.	14.7	12
2	QCM-D Investigations of Anisotropic Particle Deposition Kinetics: Evidences of the Hydrodynamic Slip Mechanisms. Analytical Chemistry, 2022, 94, 10234-10244.	6.5	8
3	Adsorption kinetic of myoglobin on mica and silica – Role of electrostatic interactions. Colloids and Surfaces B: Biointerfaces, 2021, 198, 111436.	5.0	6
4	Formation of Myoglobin Corona at Polymer Microparticles. Colloids and Interfaces, 2021, 5, 27.	2.1	3
5	Mechanism of Myoglobin Molecule Adsorption on Silica: QCM, OWLS and AFM Investigations. International Journal of Environmental Research and Public Health, 2021, 18, 4944.	2.6	0
6	Hydrodynamic Solvation of Poly(amido amine) Dendrimer Monolayers on Silica. Journal of Physical Chemistry C, 2020, 124, 17684-17695.	3.1	14
7	Microparticle Deposition on Human Serum Albumin Layers: Unraveling Anomalous Adsorption Mechanism. Colloids and Interfaces, 2020, 4, 51.	2.1	3
8	Myoglobin molecule charging in electrolyte solutions. Physical Chemistry Chemical Physics, 2020, 22, 26764-26775.	2.8	6
9	Human Serum Albumin Adsorption Kinetics on Silica: Influence of Protein Solution Stability. Langmuir, 2019, 35, 2639-2648.	3.5	26
10	Gold substrates of controlled roughness and electrokinetic properties formed by nanoparticle deposition. Physical Chemistry Chemical Physics, 2019, 21, 6535-6543.	2.8	7
11	Kinetics of human serum albumin adsorption at silica sensor: Unveiling dynamic hydration function. Colloids and Surfaces B: Biointerfaces, 2018, 167, 377-384.	5.0	20
12	Albumin adsorption at solid substrates: A quest for a unified approach. Journal of Colloid and Interface Science, 2018, 514, 769-790.	9.4	45
13	PDDA-Montmorillonite Composites Loaded with Ru Nanoparticles: Synthesis, Characterization, and Catalytic Properties in Hydrogenation of 2-Butanone. Polymers, 2018, 10, 865.	4.5	4
14	Protein adsorption mechanisms at rough surfaces: Serum albumin at a gold substrate. Journal of Colloid and Interface Science, 2018, 530, 631-641.	9.4	39
15	Influence of purification method of Na-montmorillonite on textural properties of clay mineral composites with TiO2 nanoparticles. Applied Clay Science, 2017, 140, 75-80.	5. 2	39
16	Formation of hematite nanoparticle monolayers of controlled coverage and structure at polymeric microparticles. Journal of Colloid and Interface Science, 2017, 505, 509-518.	9.4	11
17	Formation mechanism of human serum albumin monolayers on positively charged polymer microparticles. Colloids and Surfaces B: Biointerfaces, 2017, 159, 929-936.	5.0	17
18	Monolayers of silver nanoparticles on positively charged polymer microspheres. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 499, 1-9.	4.7	13

#	Article	IF	Citations
19	Magnesium and/or calcium-containing natural minerals as ecologically friendly catalysts for the Baeyer–Villiger oxidation of cyclohexanone with hydrogen peroxide. Applied Catalysis A: General, 2016, 509, 52-65.	4.3	23
20	Revealing deposition mechanism of colloid particles on human serum albumin monolayers. Colloids and Surfaces B: Biointerfaces, 2016, 137, 176-182.	5.0	9
21	Probing the Ag, Au, and Cu electrode/pyridine-α-hydroxymethyl biphenyl phosphine oxide isomer interface with SERS. Applied Surface Science, 2015, 335, 167-183.	6.1	18
22	Revealing fibrinogen monolayer conformations at different pHs: Electrokinetic and colloid deposition studies. Journal of Colloid and Interface Science, 2015, 449, 62-71.	9.4	8
23	Fibrinogen Monolayers of Controlled Coverage and Conformations for Biosensing Applications. Key Engineering Materials, 2014, 605, 243-246.	0.4	O
24	Deposition of gold nanoparticles on mica modified by poly(allylamine hydrochloride) monolayers. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 441, 204-210.	4.7	18
25	Recombinant Albumin Monolayers on Latex Particles. Langmuir, 2014, 30, 250-258.	3.5	20
26	Mechanism of Nanoparticle Deposition on Polystyrene Latex Particles. Langmuir, 2014, 30, 692-699.	3.5	20
27	Fibrinogen Monolayer Characterization by Colloid Deposition. Langmuir, 2013, 29, 11991-12002.	3.5	11
28	Mechanisms of nanoparticle and bioparticle deposition $\hat{a}\in$ Kinetic aspects. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2013, 439, 3-22.	4.7	46
29	Revealing properties of the KfrA plasmid protein via combined DLS, AFM and electrokinetic measurements. Colloids and Surfaces B: Biointerfaces, 2013, 103, 635-641.	5.0	19
30	Mechanisms of Fibrinogen Adsorption on Mica. ACS Symposium Series, 2012, , 97-127.	0.5	4
31	Mechanisms of Fibrinogen Adsorption on Latex Particles Determined by Zeta Potential and AFM Measurements. Langmuir, 2012, 28, 474-485.	3.5	42
32	Nanoemulsion-templated multilayer nanocapsules for cyanine-type photosensitizer delivery to human breast carcinoma cells. European Journal of Pharmaceutical Sciences, 2012, 47, 406-420.	4.0	55
33	Hematite nanoparticle monolayers on mica: Characterization by colloid deposition. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2012, 412, 72-81.	4.7	10
34	Colloid particle and protein deposition â€" Electrokinetic studies. Advances in Colloid and Interface Science, 2011, 168, 3-28.	14.7	76
35	Deposition of colloid particles on protein layers: Fibrinogen on mica. Journal of Colloid and Interface Science, 2011, 356, 454-464.	9.4	27
36	Streaming potential studies of colloid, polyelectrolyte and protein deposition. Advances in Colloid and Interface Science, 2010, 153, 1-29.	14.7	136

#	ARTICLE	IF	CITATION
37	Irreversible adsorption of latex particles on fibrinogen covered mica. Adsorption, 2010, 16, 259-269.	3.0	12
38	Electrokinetics of particle covered surfaces. Current Opinion in Colloid and Interface Science, 2010, 15, 175-183.	7.4	9
39	Deposition of colloid particles at heterogeneous and patterned surfaces. Advances in Colloid and Interface Science, 2009, 147-148, 2-17.	14.7	24
40	Alkali-metal promoted rhodium-on-alumina catalysts for nitrous oxide decomposition. Applied Catalysis B: Environmental, 2008, 77, 278-283.	20.2	74
41	Particle Assembly on Patterned Surfaces Bearing Circular (Dots) and Rectangular (Stripes) Surface Features. Langmuir, 2008, 24, 1756-1762.	3.5	18
42	Catalytic decomposition of N2O. Catalysis Today, 2004, 90, 15-19.	4.4	66