AnaÃ⁻s Pitto-Barry

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/48015/publications.pdf Version: 2024-02-01

ΔΝΑΔ-ς ΡΙΤΤΟ-ΒΑΡΡΥ

#	Article	IF	CITATIONS
1	Pluronic® block-copolymers in medicine: from chemical and biological versatility to rationalisation and clinical advances. Polymer Chemistry, 2014, 5, 3291-3297.	3.9	369
2	1D vs. 2D shape selectivity in the crystallization-driven self-assembly of polylactide block copolymers. Chemical Science, 2017, 8, 4223-4230.	7.4	165
3	Structural reorganization of cylindrical nanoparticles triggered by polylactide stereocomplexation. Nature Communications, 2014, 5, 5746.	12.8	125
4	Tuning the Size of Cylindrical Micelles from Poly(<scp>l</scp> -lactide)- <i>b</i> -poly(acrylic acid) Diblock Copolymers Based on Crystallization-Driven Self-Assembly. Macromolecules, 2013, 46, 9074-9082.	4.8	113
5	Nanoparticles of chitosan conjugated to organo-ruthenium complexes. Inorganic Chemistry Frontiers, 2016, 3, 1058-1064.	6.0	101
6	Double Targeting of Tumours with Pyrenylâ€Modified Dendrimers Encapsulated in an Arene–Ruthenium Metallaprism. Chemistry - A European Journal, 2011, 17, 1966-1971.	3.3	83
7	Exploiting nucleobase-containing materials $\hat{a} \in$ from monomers to complex morphologies using RAFT dispersion polymerization. Polymer Chemistry, 2015, 6, 106-117.	3.9	79
8	Self-Assembly of Temperature-Responsive Protein–Polymer Bioconjugates. Bioconjugate Chemistry, 2015, 26, 1890-1899.	3.6	78
9	Expanding the scope of the crystallization-driven self-assembly of polylactide-containing polymers. Polymer Chemistry, 2014, 5, 1427-1436.	3.9	68
10	Encapsulation of Pyreneâ€Functionalized Poly(benzyl ether) Dendrons into a Waterâ€Soluble Organometallic Cage. Chemistry - an Asian Journal, 2011, 6, 1595-1603.	3.3	63
11	Cyclic Graft Copolymer Unimolecular Micelles: Effects of Cyclization on Particle Morphology and Thermoresponsive Behavior. Macromolecules, 2016, 49, 2802-2813.	4.8	60
12	RAFT dispersion polymerization: a method to tune the morphology of thymine-containing self-assemblies. Polymer Chemistry, 2015, 6, 4984-4992.	3.9	54
13	Oxidative Stress in Cancer Therapy: Friend or Enemy?. ChemBioChem, 2022, 23, .	2.6	49
14	Designing Supramolecular Liquid-Crystalline Hybrids from Pyrenyl-Containing Dendrimers and Arene Ruthenium Metallacycles. Journal of the American Chemical Society, 2014, 136, 17616-17625.	13.7	45
15	Synthesis and controlled growth of osmium nanoparticles by electron irradiation. Dalton Transactions, 2015, 44, 20308-20311.	3.3	43
16	The Copolymer Blending Method: A New Approach for Targeted Assembly of Micellar Nanoparticles. Macromolecules, 2015, 48, 6516-6522.	4.8	40
17	Enhancement of Cytotoxicity by Combining Pyrenyl-Dendrimers and Arene Ruthenium Metallacages. Inorganic Chemistry, 2012, 51, 7119-7124.	4.0	39
18	Micellar nanoparticles with tuneable morphologies through interactions between nucleobase-containing synthetic polymers in aqueous solution. Polymer Chemistry, 2016, 7, 4254-4262.	3.9	35

AnaÃ⁻s Pitto-Barry

#	Article	IF	CITATIONS
19	Concomitant control of mechanical properties and degradation in resorbable elastomer-like materials using stereochemistry and stoichiometry for soft tissue engineering. Nature Communications, 2021, 12, 446.	12.8	34
20	Precious metal carborane polymer nanoparticles: characterisation of micellar formulations and anticancer activity. Faraday Discussions, 2014, 175, 229-240.	3.2	33
21	Tuning the aggregation behavior of pH-responsive micelles by copolymerization. Polymer Chemistry, 2015, 6, 2761-2768.	3.9	32
22	Fabrication of crystals from single metal atoms. Nature Communications, 2014, 5, 3851.	12.8	31
23	Polymers and boron neutron capture therapy (BNCT): a potent combination. Polymer Chemistry, 2021, 12, 2035-2044.	3.9	31
24	Use of complementary nucleobase-containing synthetic polymers to prepare complex self-assembled morphologies in water. Polymer Chemistry, 2016, 7, 2836-2846.	3.9	29
25	Arene ruthenium dithiolato–carborane complexes for boron neutron capture therapy (BNCT). Journal of Organometallic Chemistry, 2015, 796, 17-25.	1.8	27
26	Dual effect of thiol addition on fluorescent polymeric micelles: ON-to-OFF emissive switch and morphology transition. Chemical Communications, 2014, 50, 11492-11495.	4.1	26
27	Complementary light scattering and synchrotron small-angle X-ray scattering studies of the micelle-to-unimer transition of polysulfobetaines. Soft Matter, 2015, 11, 3666-3676.	2.7	25
28	CO ₂ /pH-responsive particles with built-in fluorescence read-out. Polymer Chemistry, 2016, 7, 5943-5948.	3.9	24
29	Amphiphilic block copolymer selfâ€assemblies of poly(NVP)â€ <i>b</i> â€poly(MDOâ€ <i>co</i> â€vinyl esters): Tunable dimensions and functionalities. Journal of Polymer Science Part A, 2015, 53, 2699-2710.	2.3	16
30	Core functionalization of semi-crystalline polymeric cylindrical nanoparticles using photo-initiated thiol–ene radical reactions. Polymer Chemistry, 2016, 7, 2337-2341.	3.9	16
31	The hydrolytic behavior of N,N′-(dimethylamino)ethyl acrylate-functionalized polymeric stars. Polymer Chemistry, 2017, 8, 5060-5070.	3.9	15
32	Exploiting topology-directed nanoparticle disassembly for triggered drug delivery. Biomaterials, 2018, 180, 184-192.	11.4	15
33	Construction of DNA–polymer hybrids using intercalation interactions. Chemical Communications, 2014, 50, 1338-1340.	4.1	14
34	Synthetic strategies, sustainability and biological applications of malic acid–based polymers. Green Materials, 2014, 2, 107-122.	2.1	14
35	Osmium Atoms and Os ₂ Molecules Move Faster on Selenium-Doped Compared to Sulfur-Doped Boronic Graphenic Surfaces. Chemistry of Materials, 2015, 27, 5100-5105.	6.7	14
36	Dynamics of formation of Ru, Os, Ir and Au metal nanocrystals on doped graphitic surfaces. Chemical Communications, 2016, 52, 3895-3898.	4.1	13

ANAÃ⁻s Pitto-Barry

#	Article	IF	CITATIONS
37	Pseudo electron-deficient organometallics: limited reactivity towards electron-donating ligands. Dalton Transactions, 2017, 46, 15676-15683.	3.3	13
38	Controlled fabrication of osmium nanocrystals by electron, laser and microwave irradiation and characterisation by microfocus X-ray absorption spectroscopy. Chemical Communications, 2017, 53, 12898-12901.	4.1	12
39	Synthesis, Characterisation and In Vitro Anticancer Activity of Catalytically Active Indole-Based Half-Sandwich Complexes. Molecules, 2020, 25, 4540.	3.8	12
40	Retaining individualities: the photodynamics of self-ordering porphyrin assemblies. Chemical Communications, 2016, 52, 1938-1941.	4.1	11
41	Anti-inflammatory activity of electron-deficient organometallics. Royal Society Open Science, 2017, 4, 170786.	2.4	11
42	Effect of Temperature on the Nucleation and Growth of Precious Metal Nanocrystals. Angewandte Chemie - International Edition, 2019, 58, 18482-18486.	13.8	10
43	Preclinical Anticancer Activity of an Electronâ€Deficient Organoruthenium(II) Complex. ChemMedChem, 2020, 15, 982-987.	3.2	10
44	Structural Determinants of the Stability of Enzymeâ€Responsive Polyion Complex Nanoparticles Targeting <i>Pseudomonas aeruginosa</i> 's Elastase. ChemNanoMat, 2018, 4, 807-814.	2.8	9
45	The Sound of Chemistry: Translating Infrared Wavenumbers into Musical Notes. Journal of Chemical Education, 2020, 97, 703-709.	2.3	9
46	Schizophrenia: synthetic strategies and recent advances in drug design. MedChemComm, 2018, 9, 759-782.	3.4	8
47	The synthesis and unexpected solution chemistry of thermochromic carborane-containing osmium half-sandwich complexes. Dalton Transactions, 2016, 45, 1763-1768.	3.3	7
48	New Class of Hybrid Materials for Detection, Capture, and "On-Demand―Release of Carbon Monoxide. ACS Applied Materials & Interfaces, 2018, 10, 13693-13701.	8.0	7
49	Anticancer Activity of Electronâ€Deficient Metal Complexes against Colorectal Cancer inâ€vitro Models. ChemMedChem, 2019, 14, 1887-1893.	3.2	7
50	Influence of boron doping on the dynamics of formation of Os metal nanoclusters on graphitic surfaces. Chemical Communications, 2019, 55, 6038-6041.	4.1	7
51	Indole-containing arene-ruthenium complexes with broad spectrum activity against antibiotic-resistant bacteria. Current Research in Microbial Sciences, 2022, 3, 100099.	2.3	6
52	Controlled Release of Carbon Monoxide from a Pseudo Electron-Deficient Organometallic Complex. ACS Omega, 2018, 3, 15623-15627.	3.5	3
53	Effect of Temperature on the Nucleation and Growth of Precious Metal Nanocrystals. Angewandte Chemie, 2019, 131, 18653-18657.	2.0	3
54	Evaluation of the Toxicity of Two Electronâ€Deficient Halfâ€Sandwich Complexes against Human Lymphocytes from Healthy Individuals. ChemMedChem, 2021, 16, 624-629.	3.2	3