
W Steven Ward

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4801391/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Deletion of Orc4 during oogenesis severely reduces polar body extrusion and blocks zygotic DNA replication. Biology of Reproduction, 2022, , .	1.2	2
2	The role of ORC4 in enucleation of Murine Erythroleukemia (MEL) cells is similar to that in oocyte polar body extrusion. Systems Biology in Reproductive Medicine, 2020, 66, 378-386.	1.0	2
3	Contributions of Ryuzo Yanagimachi to the field of reproductive biology. Biology of Reproduction, 2019, 100, 1-7.	1.2	1
4	Spatial and temporal resolution of mORC4 fluorescent variants reveals structural requirements for achieving higher order self-association and pronuclei entry. Methods and Applications in Fluorescence, 2019, 7, 035002.	1.1	3
5	Chromatin Structure in Sperm: Composition and Function. , 2018, , 129-133.		0
6	Sperm Nuclear Architecture. , 2018, , 53-61.		2
7	Higher Order Oligomerization of the Licensing ORC4 Protein Is Required for Polar Body Extrusion in Murine Meiosis. Journal of Cellular Biochemistry, 2017, 118, 2941-2949.	1.2	5
8	Eight tests for sperm DNA fragmentation and their roles in the clinic. Translational Andrology and Urology, 2017, 6, S468-S470.	0.6	7
9	Presence of the Paternal Pronucleus Assists Embryo in Overcoming Cycloheximide Induced Abnormalities in Zygotic Mitosis. Journal of Cellular Biochemistry, 2016, 117, 1806-1812.	1.2	0
10	ORC proteins in the mammalian zygote. Cell and Tissue Research, 2016, 363, 195-200.	1.5	11
11	Luminal fluid of epididymis and vas deferens contributes to sperm chromatin fragmentation. Human Reproduction, 2015, 30, dev245.	0.4	26
12	ORC4 Surrounds Extruded Chromatin in Female Meiosis. Journal of Cellular Biochemistry, 2015, 116, 778-786.	1.2	12
13	A model for the control of DNA integrity by the sperm nuclear matrix. Asian Journal of Andrology, 2015, 17, 610.	0.8	16
14	Medical school hotline: The Institute for Biogenesis Research: a flower in the Pacific. Hawai'i Journal of Medicine & Public Health: A Journal of Asia Pacific Medicine & Public Health, 2014, 73, 393-6.	0.4	0
15	Isolation of Sperm Nuclei and Nuclear Matrices from the Mouse, and Other Rodents. Methods in Molecular Biology, 2013, 927, 437-444.	0.4	4
16	Mouse Zygotes Respond to Severe Sperm DNA Damage by Delaying Paternal DNA Replication and Embryonic Development. PLoS ONE, 2013, 8, e56385.	1.1	104
17	The Relationship Between Chromatin Structure and DNA Damage in Mammalian Spermatozoa. , 2013, , 45-53.		0
18	Unique Pattern of ORC2 and MCM7 Localization During DNA Replication Licensing in the Mouse Zygote1. Biology of Reproduction, 2012, 87, 62.	1.2	10

W STEVEN WARD

#	Article	IF	CITATIONS
19	Pum 1 sequesters apoptosis during spermatogenesis. Asian Journal of Andrology, 2012, 14, 513-513.	0.8	1
20	Non-genetic contributions of the sperm nucleus to embryonic development. Asian Journal of Andrology, 2011, 13, 31-35.	0.8	56
21	Regulating DNA Supercoiling: Sperm Points the Way1. Biology of Reproduction, 2011, 84, 841-843.	1.2	19
22	Mammalian sperm chromatin as a model for chromatin function in DNA degradation and DNA replication. Systems Biology in Reproductive Medicine, 2011, 57, 43-49.	1.0	5
23	Function of sperm chromatin structural elements in fertilization and development. Molecular Human Reproduction, 2010, 16, 30-36.	1.3	309
24	Asynchronous DNA replication and origin licensing in the mouse one ell embryo. Journal of Cellular Biochemistry, 2009, 107, 214-223.	1.2	16
25	A Novel Nuclease Activity that is Activated by Ca2+Chelated to EGTA. Systems Biology in Reproductive Medicine, 2009, 55, 193-199.	1.0	21
26	Mouse spermatozoa contain a nuclease that is activated by pretreatment with EGTA and subsequent calcium incubation. Journal of Cellular Biochemistry, 2008, 103, 1636-1645.	1.2	35
27	Paternal DNA Degradation and its Relationship to DNA Synthesis in the One-Cell Embryo Biology of Reproduction, 2008, 78, 159-159.	1.2	Ο
28	Topoisomerase II-Mediated Breaks in Spermatozoa Cause the Specific Degradation of Paternal DNA in Fertilized Oocytes1. Biology of Reproduction, 2007, 76, 666-672.	1.2	46
29	Function of the Sperm Nuclear Matrix. Archives of Andrology, 2007, 53, 135-140.	1.0	42
30	Paternal Pronuclear DNA Degradation Is Functionally Linked to DNA Replication in Mouse Oocytes1. Biology of Reproduction, 2007, 77, 407-415.	1.2	39
31	Evidence of Alu and B1 Expression in dbEST. Archives of Andrology, 2007, 53, 207-218.	1.0	5
32	Most human Alu and Murine B1 repeats are unique. Journal of Cellular Biochemistry, 2007, 102, 110-121.	1.2	22
33	The sperm nuclear matrix is required for paternal DNA replication. Journal of Cellular Biochemistry, 2007, 102, 680-688.	1.2	59
34	Topoisomerase IIB and an Extracellular Nuclease Interact to Digest Sperm DNA in an Apoptotic-Like Manner1. Biology of Reproduction, 2006, 75, 741-748.	1.2	92
35	An Endogenous Nuclease in Hamster, Mouse, and Human Spermatozoa Cleaves DNA into Loopâ€ S ized Fragments. Journal of Andrology, 2005, 26, 272-280.	2.0	121
36	A model for the function of sperm DNA degradation. Reproduction, Fertility and Development, 2004, 16, 547.	0.1	52

W STEVEN WARD

#	Article	IF	CITATIONS
37	A model for the function of sperm DNA degradation. Reproduction, Fertility and Development, 2004, 16, 547-54.	0.1	20
38	Ability of Hamster Spermatozoa to Digest Their Own DNA1. Biology of Reproduction, 2003, 69, 2029-2035.	1.2	112
39	Sperm nuclear halos can transform into normal chromosomes after injection into oocytes. Molecular Reproduction and Development, 2002, 62, 416-420.	1.0	29
40	Changes in DNA Loop Domain Structure During Spermatogenesis and Embryogenesis in the Syrian Golden Hamster1. Biology of Reproduction, 2001, 64, 1297-1306.	1.2	22
41	Further evidence that sperm nuclear proteins are necessary for embryogenesis. Zygote, 2000, 8, 51-56.	0.5	41
42	Interaction of exogenous DNA with the nuclear matrix of live spermatozoa. , 2000, 56, 235-237.		11
43	DNA loop domain organization: The three-dimensional genomic code. Journal of Cellular Biochemistry, 2000, 79, 23-26.	1.2	27
44	Investigation Of Dna Organization In Spermatozoa Using High Resolution Scanning Electron Microscopy. Microscopy and Microanalysis, 1999, 5, 1282-1283.	0.2	0
45	An Intact Sperm Nuclear Matrix May Be Necessary for the Mouse Paternal Genome to Participate in Embryonic Development1. Biology of Reproduction, 1999, 60, 702-706.	1.2	109
46	Can alcohol retain the reproductive and genetic potential of sperm nuclei? Chromosome analysis of mouse spermatozoa stored in alcohol. Zygote, 1998, 6, 233-238.	0.5	20
47	Investigation of DNA Loop Domains using Fluorescent in Situ Hybridization (FISH) and Epi-Fluorescence Microscopy. Microscopy and Microanalysis, 1998, 4, 1128-1129.	0.2	0
48	Investigation of DNA Loop Domains using Fluorescent in Situ Hybridization (FISH) and Epifluorescence Microscopy. Microscopy and Microanalysis, 1998, 4, 1116-1117.	0.2	0
49	Cell-Specific Organization of the 5S Ribosomal RNA Gene Cluster DNA Loop Domains in Spermatozoa and Somatic Cells1. Biology of Reproduction, 1995, 53, 1222-1228.	1.2	51
50	The structure of the sleeping genome: Implications of sperm DNA organization for somatic cells. Journal of Cellular Biochemistry, 1994, 55, 77-82.	1.2	71
51	Deoxyribonucleic Acid Loop Domain Tertiary Structure in Mammalian Spermatozoa1. Biology of Reproduction, 1993, 48, 1193-1201.	1.2	132
52	Nuclear structure and the three-dimensional organization of DNA. Journal of Cellular Biochemistry, 1991, 47, 289-299.	1.2	151
53	DNA Packaging and Organization in Mammalian Spermatozoa: Comparison with Somatic Cell. Biology of Reproduction, 1991, 44, 569-574.	1.2	630
54	Specific organization of genes in relation to the sperm nuclear matrix. Biochemical and Biophysical Research Communications, 1990, 173, 20-25.	1.0	58

W STEVEN WARD

#	Article	IF	CITATIONS
55	ldentification of a Sperm Nuclear Annulus: A Sperm DNA Anchor1. Biology of Reproduction, 1989, 41, 361-370.	1.2	61
56	DNA loop domains in mammalian spermatozoa. Chromosoma, 1989, 98, 153-159.	1.0	102
57	Sperm chromatin stability and susceptibility to damage in relation to its structure. , 0, , 31-48.		8
58	Sperm Chromatin Stability and Susceptibility to Damage in Relation to Its Structure. , 0, , 21-35.		4