Ming Hu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4801073/publications.pdf

Version: 2024-02-01

87401 49824 8,560 119 40 91 citations h-index g-index papers 124 124 124 12144 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Automated synthesis of gadopentetate dimeglumine through solid-liquid reaction in femtosecond laser fabricated microfluidic chips. Chinese Chemical Letters, 2022, 33, 1077-1080.	4.8	3
2	Automated and remote synthesis of poly(ethylene glycol)-mineralized ZIF-8 composite particles via a synthesizer assisted by femtosecond laser micromachining. Chinese Chemical Letters, 2022, 33, 497-500.	4.8	11
3	Recent advances in autonomous synthesis of materials. ChemPhysMater, 2022, 1, 77-85.	1.4	11
4	Anti-corrosive Prussian blue film modified by polydopamine for energy extraction and sensing in seawater. Molecular Systems Design and Engineering, 2022, 7, 480-486.	1.7	2
5	Three-Dimensional Large-Scale Fused Silica Microfluidic Chips Enabled by Hybrid Laser Microfabrication for Continuous-Flow UV Photochemical Synthesis. Micromachines, 2022, 13, 543.	1.4	8
6	Hindered Tetraphenylethylene Helicates: Chiral Fluorophores with Deepâ€Blue Emission, Multipleâ€Color CPL, and Chiral Recognition Ability. Angewandte Chemie - International Edition, 2022, 61, e202115216.	7.2	26
7	An X-State Solid-liquid Mixture with Unusual Mechanical Properties by Water and Coordination Polymer Nanosheets Nanoarchitectonics. Nanoscale, 2022, , .	2.8	3
8	Iron Single Atoms Anchored on Nitrogen-Doped Carbon Matrix/Nanotube Hybrid Supports for Excellent Oxygen Reduction Properties. Nanomaterials, 2022, 12, 1593.	1.9	2
9	Spatial-controlled etching of coordination polymers. Chinese Chemical Letters, 2021, 32, 635-641.	4.8	9
10	Size-controlled flow synthesis of metal-organic frameworks crystals monitored by in-situ ultraviolet–visible absorption spectroscopy. Chinese Chemical Letters, 2021, 32, 1131-1134.	4.8	16
11	Recent Advances in Rechargeable Batteries with Prussian Blue Analogs Nanoarchitectonics. Journal of Inorganic and Organometallic Polymers and Materials, 2021, 31, 1877-1893.	1.9	16
12	Modular Construction of Prussian Blue Analog and TiO ₂ Dual ompartment Janus Nanoreactor for Efficient Photocatalytic Water Splitting. Advanced Science, 2021, 8, 2001987.	5.6	48
13	Precisely Engineering Architectures of Co/C Subâ€Microreactors for Selective Syngas Conversion. Small, 2021, 17, e2100082.	5.2	14
14	Poly(ethylene glycol)-Mediated Assembly of Vaccine Particles to Improve Stability and Immunogenicity. ACS Applied Materials & Samp; Interfaces, 2021, 13, 13978-13989.	4.0	32
15	Single-Crystal Lattice Filling in Connected Spaces inside 3D Networks. Journal of the American Chemical Society, 2021, 143, 6447-6459.	6.6	12
16	Algae-inspired multifunctional ocean solar-energy conversion chain enabled by coordination polymers. Cell Reports Physical Science, 2021, 2, 100466.	2.8	9
17	Flexible conductive polymer composite materials based on strutted graphene foam. Composites Communications, 2021, 25, 100757.	3.3	27
18	Electron transfer bridging by porous seawater fluid. Cell Reports Physical Science, 2021, 2, 100518.	2.8	3

#	Article	IF	CITATIONS
19	Superstructured mesocrystals through multiple inherent molecular interactions for highly reversible sodium ion batteries. Science Advances, 2021, 7, eabh3482.	4.7	74
20	Circularly Polarized Luminescence and <scp>SHG</scp> Chiral Signals of Helical <scp>TPE</scp> Macrocycles. Chinese Journal of Chemistry, 2021, 39, 3353-3359.	2.6	7
21	Tunable Circularly Polarized Luminescence from Single Crystal and Powder of the Simplest Tetraphenylethylene Helicate. ACS Nano, 2021, 15, 16673-16682.	7. 3	34
22	Design of two-dimensional metal–organic framework nanosheets for emerging applications. FlatChem, 2021, 29, 100287.	2.8	7
23	A high-power seawater battery working in a wide temperature range enabled by an ultra-stable Prussian blue analogue cathode. Journal of Materials Chemistry A, 2021, 9, 8685-8691.	5.2	12
24	Efficient Federated Learning for Cloud-Based AloT Applications. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2021, 40, 2211-2223.	1.9	26
25	Hierarchically porous carbon cages synthesized through in situ migration of templates. Chinese Chemical Letters, 2020, 31, 303-306.	4.8	9
26	Chiral recognition and enantiomer excess determination based on emission wavelength change of AlEgen rotor. Nature Communications, 2020, 11, 161.	5.8	41
27	Metal-Organic Powder Thermochemical Solid-Vapor Architectonics toward Gradient Hybrid Monolith with Combined Structure-Function Features. Matter, 2020, 3, 879-891.	5.0	22
28	Poly(ethylene glycol)-mediated mineralization of metal–organic frameworks. Chemical Communications, 2020, 56, 11078-11081.	2.2	31
29	The largest CPL enhancement by further assembly of self-assembled superhelices based on the helical TPE macrocycle. Materials Horizons, 2020, 7, 3209-3216.	6.4	65
30	Quantitative Timing Analysis for Cyber-Physical Systems Using Uncertainty-Aware Scenario-Based Specifications. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2020, 39, 4006-4017.	1.9	6
31	Inducing Intermediates in Biotransformation of Natural Polyacetylene and A Novel Spiro- $\hat{1}^3$ -Lactone from Red Ginseng by Solid Co-Culture of Two Gut Chaetomium globosum and The Potential Bioactivity Modification by Oxidative Metabolism. Molecules, 2020, 25, 1216.	1.7	2
32	Coupled Electrical Conduction in Coordination Polymers: From Electrons/Ions to Mixed Charge Carriers. Chemistry - an Asian Journal, 2020, 15, 1202-1213.	1.7	7
33	Enhanced DNA Sensing and Chiroptical Performance by Restriction of Double-Bond Rotation of AIE <i>ci><is< i="">f>-Tetraphenylethylene Macrocycle Diammoniums. Organic Letters, 2020, 22, 1836-1840.</is<></i>	2.4	29
34	Biomass-Derived Carbon Paper to Sandwich Magnetite Anode for Long-Life Li-Ion Battery. ACS Nano, 2019, 13, 11901-11911.	7.3	82
35	Controllable nitrogen-doping of nanoporous carbons enabled by coordination frameworks. Journal of Materials Chemistry A, 2019, 7, 647-656.	5.2	43
36	The self-assembly and chiroptical properties of tetraphenylethylene dicycle tetracholesterol with an AIE effect. Journal of Materials Chemistry C, 2019, 7, 8236-8243.	2.7	29

#	Article	IF	Citations
37	Zincâ€Tiered Synthesis of 3D Graphene for Monolithic Electrodes. Advanced Materials, 2019, 31, e1901186.	11.1	68
38	Nanoarchitectonics: A New Materials Horizon for Prussian Blue and Its Analogues. Bulletin of the Chemical Society of Japan, 2019, 92, 875-904.	2.0	252
39	Magnetism tuned by intercalation of various metal ions in coordination polymer. Chinese Chemical Letters, 2019, 30, 1390-1392.	4.8	15
40	An Autoâ€Switchable Dualâ€Mode Seawater Energy Extraction System Enabled by Metal–Organic Frameworks. Angewandte Chemie - International Edition, 2019, 58, 7431-7434.	7.2	31
41	An Autoâ€Switchable Dualâ€Mode Seawater Energy Extraction System Enabled by Metal–Organic Frameworks. Angewandte Chemie, 2019, 131, 7509-7512.	1.6	0
42	Flexible films enabled by coordination polymer nanoarchitectonics. Molecular Systems Design and Engineering, 2019, 4, 531-544.	1.7	7
43	Synthesis of coordination polymer thin films with conductance-response to mechanical stimulation. Chemical Communications, 2019, 55, 2545-2548.	2.2	9
44	A flexible cyanometallate coordination polymer electrode for electrochemical dual-mode seawater energy extraction. Journal of Materials Chemistry A, 2019, 7, 23084-23090.	5.2	14
45	Preferential deposition of cyanometallate coordination polymer nanoplates through evaporation of droplets. Chinese Chemical Letters, 2019, 30, 630-633.	4.8	11
46	Few-layer graphitic shells networked by low temperature pyrolysis of zeolitic imidazolate frameworks. Materials Chemistry Frontiers, 2018, 2, 520-529.	3.2	9
47	Prussian Blue Analogue Mesoframes for Enhanced Aqueous Sodium-ion Storage. Crystals, 2018, 8, 23.	1.0	18
48	Synthesis of Mesoporous Yolk-Shell Magnetic Prussian Blue Particles for Multi-Functional Nanomedicine. Journal of Nanoscience and Nanotechnology, 2018, 18, 3059-3066.	0.9	4
49	Fighting at the Interface: Structural Evolution during Heteroepitaxial Growth of Cyanometallate Coordination Polymers. Inorganic Chemistry, 2018, 57, 8701-8704.	1.9	14
50	Confined Synthesis of Coordination Frameworks inside Double-Network Hydrogel for Fabricating Hydrogel-Based Water Pipes with High Adsorption Capacity for Cesium Ions. Bulletin of the Chemical Society of Japan, 2018, 91, 1357-1363.	2.0	12
51	Rational Synthesis of Hollow Prussian Blue Analogue Through Coordination Replication and Controlled-Etching for Cs-lon Removal. Journal of Nanoscience and Nanotechnology, 2018, 18, 3230-3238.	0.9	4
52	Fabrication of core–shell, yolk–shell and hollow Fe ₃ O ₄ @carbon microboxes for high-performance lithium-ion batteries. Materials Chemistry Frontiers, 2017, 1, 823-830.	3.2	58
53	Hollow carbon nanobubbles: monocrystalline MOF nanobubbles and their pyrolysis. Chemical Science, 2017, 8, 3538-3546.	3.7	329
54	Spontaneous Weaving of Graphitic Carbon Networks Synthesized by Pyrolysis of ZIFâ€67 Crystals. Angewandte Chemie, 2017, 129, 8555-8560.	1.6	33

#	Article	IF	Citations
55	Spontaneous Weaving of Graphitic Carbon Networks Synthesized by Pyrolysis of ZIFâ€67 Crystals. Angewandte Chemie - International Edition, 2017, 56, 8435-8440.	7.2	362
56	Coordination Polymer Nanoglue: Robust Adhesion Based on Collective Lamellar Stacking of Nanoplates. ACS Nano, 2017, 11, 3662-3670.	7.3	27
57	Wellâ€Defined Cyanometallate Coordinationâ€Polymer Nanoarchitectures Realized by Wetâ€Chemical Manipulation. ChemNanoMat, 2017, 3, 780-789.	1.5	12
58	Space charge formation related to the structural relaxation of SiO2/LDPE nanocomposite. , 2017, , .		1
59	Void Engineering in Metal–Organic Frameworks via Synergistic Etching and Surface Functionalization. Advanced Functional Materials, 2016, 26, 5827-5834.	7.8	302
60	Nanoporous Mn-based electrocatalysts through thermal conversion of cyano-bridged coordination polymers toward ultra-high efficiency hydrogen peroxide production. Journal of Materials Chemistry A, 2016, 4, 9266-9274.	5.2	51
61	Cyanoâ€Bridged Trimetallic Coordination Polymer Nanoparticles and Their Thermal Decomposition into Nanoporous Spinel Ferromagnetic Oxides. Chemistry - A European Journal, 2016, 22, 15042-15048.	1.7	10
62	Modular assembly of superstructures from polyphenol-functionalized building blocks. Nature Nanotechnology, 2016, $11,1105-1111$.	15.6	337
63	A systematic study of the impact of etching time to the sensitivity of SiNW sensor fabricated by MACEtch process. Materials Science in Semiconductor Processing, 2016, 56, 307-312.	1.9	4
64	Frontispiece: Synthesis of Monocrystalline Nanoframes of Prussian Blue Analogues by Controlled Preferential Etching. Angewandte Chemie - International Edition, 2016, 55, .	7.2	1
65	Synthesis of Monocrystalline Nanoframes of Prussian Blue Analogues by Controlled Preferential Etching. Angewandte Chemie - International Edition, 2016, 55, 8228-8234.	7.2	184
66	Synthesis of Monocrystalline Nanoframes of Prussian Blue Analogues by Controlled Preferential Etching. Angewandte Chemie, 2016, 128, 8368-8374.	1.6	28
67	Frontispiz: Synthesis of Monocrystalline Nanoframes of Prussian Blue Analogues by Controlled Preferential Etching. Angewandte Chemie, 2016, 128, .	1.6	0
68	Mesocrystalline coordination polymer as a promising cathode for sodium-ion batteries. Chemical Communications, 2016, 52, 1957-1960.	2.2	30
69	Structuralization of Ca ²⁺ -Based Metal–Organic Frameworks Prepared via Coordination Replication of Calcium Carbonate. Inorganic Chemistry, 2016, 55, 3700-3705.	1.9	39
70	Controlled Synthesis of Nanoporous Nickel Oxide with Twoâ€Dimensional Shapes through Thermal Decomposition of Metal–Cyanide Hybrid Coordination Polymers. Chemistry - A European Journal, 2015, 21, 3509-3509.	1.7	2
71	Synthesis of Nanoporous Niâ€Co Mixed Oxides by Thermal Decomposition of Metalâ€Cyanide Coordination Polymers. Chemistry - an Asian Journal, 2015, 10, 1541-1545.	1.7	29

Cover Picture: Controlled Synthesis of Nanoporous Nickel Oxide with Twoâ€Dimensional Shapes
through Thermal Decomposition of Metal–Cyanide Hybrid Coordination Polymers (Chem. Eur. J.) Tj ETQq0 0 0 rg ₹7/Overlook 10 Tf 50

#	Article	IF	CITATIONS
73	Engineering Low-Fouling and pH-Degradable Capsules through the Assembly of Metal-Phenolic Networks. Biomacromolecules, 2015, 16, 807-814.	2.6	121
74	Engineering Poly(ethylene glycol) Particles for Improved Biodistribution. ACS Nano, 2015, 9, 1571-1580.	7.3	148
75	Versatile Loading of Diverse Cargo into Functional Polymer Capsules. Advanced Science, 2015, 2, 1400007.	5. 6	40
76	Controlled Synthesis of Nanoporous Nickel Oxide with Twoâ€Dimensional Shapes through Thermal Decomposition of Metal–Cyanide Hybrid Coordination Polymers. Chemistry - A European Journal, 2015, 21, 3605-3612.	1.7	64
77	Generalizable Strategy for Engineering Protein Particles with pH-Triggered Disassembly and Recoverable Protein Functionality. ACS Macro Letters, 2015, 4, 160-164.	2.3	13
78	Three-dimensional hierarchical Prussian blue composed of ultrathin nanosheets: enhanced hetero-catalytic and adsorption properties. Chemical Communications, 2015, 51, 17568-17571.	2.2	53
79	Three-dimensionalization of ultrathin nanosheets in a two-dimensional nano-reactor: macroporous CuO microstructures with enhanced cycling performance. Chemical Communications, 2015, 51, 206-209.	2.2	35
80	Singleâ€Crystalâ€like Nanoporous Spinel Oxides: A Strategy for Synthesis of Nanoporous Metal Oxides Utilizing Metalâ€Cyanide Hybrid Coordination Polymers. Chemistry - A European Journal, 2014, 20, 17375-17384.	1.7	41
81	Thermal Conversion of Hollow Prussian Blue Nanoparticles into Nanoporous Iron Oxides with Crystallized Hematite Phase. European Journal of Inorganic Chemistry, 2014, 2014, 1137-1141.	1.0	27
82	Coordination polymers for catalysis: enhancement of catalytic activity through hierarchical structuring. Chemical Communications, 2014, 50, 8543-8546.	2.2	47
83	HF-Free Synthesis of Anatase TiO ₂ Nanosheets with Largely Exposed and Clean {001} facets and Their Enhanced Rate Performance As Anodes of Lithium-Ion Battery. ACS Applied Materials & Interfaces, 2014, 6, 19176-19183.	4.0	65
84	Monocrystalline mesoporous metal oxide with perovskite structure: a facile solid-state transformation of a coordination polymer. Chemical Communications, 2014, 50, 13849-13852.	2.2	11
85	Direct Synthesis of MOFâ€Derived Nanoporous Carbon with Magnetic Co Nanoparticles toward Efficient Water Treatment. Small, 2014, 10, 2096-2107.	5. 2	588
86	Controlled Crystallization of Cyanoâ€Bridged Cu–Pt Coordination Polymers with Twoâ€Dimensional Morphology. Chemistry - an Asian Journal, 2014, 9, 1511-1514.	1.7	14
87	Bottomâ€Up Synthesis of Monodispersed Singleâ€Crystalline Cyanoâ€Bridged Coordination Polymer Nanoflakes. Angewandte Chemie - International Edition, 2013, 52, 1235-1239.	7.2	87
88	Kinetically Controlled Crystallization for Synthesis of Monodispersed Coordination Polymer Nanocubes and Their Selfâ€Assembly to Periodic Arrangements. Chemistry - A European Journal, 2013, 19, 1882-1885.	1.7	122
89	Facile synthesis of nanoporous carbons with controlled particle sizes by direct carbonization of monodispersed ZIF-8 crystals. Chemical Communications, 2013, 49, 2521.	2.2	474
90	Tailored Design of Multiple Nanoarchitectures in Metal-Cyanide Hybrid Coordination Polymers. Journal of the American Chemical Society, 2013, 135, 384-391.	6.6	228

#	Article	IF	Citations
91	Rational Design and Synthesis of Cyanoâ€Bridged Coordination Polymers with PreciseÂ-Control of Particle Size from 20 to 500 nm. European Journal of Inorganic Chemistry, 2013, 2013, 3141-3145.	1.0	33
92	Mesoporous Metallic Cells: Design of Uniformly Sized Hollow Mesoporous Pt–Ru Particles with Tunable Shell Thicknesses. Small, 2013, 9, 1047-1051.	5.2	159
93	Large Cs adsorption capability of nanostructured Prussian Blue particles with high accessible surface areas. Journal of Materials Chemistry, 2012, 22, 18261.	6.7	174
94	Hierarchical magnetic iron (iii) oxides prepared by solid-state thermal decomposition of coordination polymers. RSC Advances, 2012, 2, 4782.	1.7	21
95	Synthesis of Superparamagnetic Nanoporous Iron Oxide Particles with Hollow Interiors by Using Prussian Blue Coordination Polymers. Chemistry of Materials, 2012, 24, 2698-2707.	3.2	163
96	Liquid–liquid interface-assisted solvothermal synthesis of durian-like α-Fe2O3 hollow spheres constructed by nano-polyhedrons. CrystEngComm, 2012, 14, 3056.	1.3	31
97	Controlled synthesis of novel flowerlike \hat{l} ±-Fe2O3 nanostructures via a one-step biphasic interfacial reaction route. CrystEngComm, 2012, 14, 7701.	1.3	36
98	Preparation of Various Prussian Blue Analogue Hollow Nanocubes with Single Crystalline Shells. European Journal of Inorganic Chemistry, 2012, 2012, 4795-4799.	1.0	82
99	Nanoporous carbons through direct carbonization of a zeolitic imidazolate framework for supercapacitor electrodes. Chemical Communications, 2012, 48, 7259.	2.2	624
100	Highly biocompatible, hollow coordination polymer nanoparticles as cisplatin carriers for efficient intracellular drug delivery. Chemical Communications, 2012, 48, 5151.	2.2	157
101	Direct Carbonization of Al-Based Porous Coordination Polymer for Synthesis of Nanoporous Carbon. Journal of the American Chemical Society, 2012, 134, 2864-2867.	6.6	588
102	Size- and shape-controlled synthesis of Prussian Blue nanoparticles by a polyvinylpyrrolidone-assisted crystallization process. CrystEngComm, 2012, 14, 3387.	1.3	143
103	Synthesis of Prussian Blue Nanoparticles with a Hollow Interior by Controlled Chemical Etching. Angewandte Chemie - International Edition, 2012, 51, 984-988.	7.2	424
104	Direct synthesis of nanoporous carbon nitride fibers using Al-based porous coordination polymers (Al-PCPs). Chemical Communications, 2011, 47, 8124.	2.2	140
105	Facile synthesis of air-stable Prussian white microcubes via a hydrothermal method. Materials Research Bulletin, 2011, 46, 702-707.	2.7	28
106	Synthesis of a Titaniumâ€Containing Prussianâ€Blue Analogue with a Wellâ€Defined Cube Structure and Its Thermal Conversion into a Nanoporous Titanium–Ironâ€Based Oxide. Chemistry - an Asian Journal, 2011, 6, 2282-2286.	1.7	34
107	Sophisticated Crystal Transformation of a Coordination Polymer into Mesoporous Monocrystalline Ti–Feâ€Based Oxide with Roomâ€₹emperature Ferromagnetic Behavior. Chemistry - an Asian Journal, 2011, 6, 3195-3199.	1.7	18
108	A Highly Enantioselective Access to Chiral 1â€(<i>)î²</i> àâ€Arylalkyl)â€1 <i>H</i> â€1,2,4â€triazole Derivatives as Potential Agricultural Bactericides. Chemistry and Biodiversity, 2011, 8, 1497-1511.	1.0	11

#	Article	IF	Citations
109	Hydrothermal synthesis of magnetite crystals: From sheet to pseudo-octahedron. Materials Research Bulletin, 2010, 45, 1811-1815.	2.7	12
110	Synthesis, Characterization, and Properties of Binuclear Gold(I) Phosphine Alkynyl Complexes. Organometallics, 2010, 29, 2808-2814.	1,1	51
111	How Does the Distribution of External Magnetic Lines of Force Influence the Growth of Ferromagnetic Material?. Journal of Physical Chemistry C, 2010, 114, 12090-12094.	1.5	8
112	Non-classical crystallization controlled by centrifugation. CrystEngComm, 2010, 12, 3391.	1.3	13
113	Prussian blue microcrystals prepared by selective etching and their conversion to mesoporous magnetic iron(iii) oxides. Chemical Communications, 2010, 46, 1133-1135.	2.2	81
114	Prussian blue mesocrystals: an example of self-construction. CrystEngComm, 2010, 12, 2679.	1.3	33
115	Metallic cobalt microcrystals with flowerlike architectures: Synthesis, growth mechanism and magnetic properties. Materials Research Bulletin, 2009, 44, 1468-1473.	2.7	28
116	Convenient Access to <i>β</i> >â€Substituted Chiral Phenones. Helvetica Chimica Acta, 2009, 92, 1007-1013.	1.0	4
117	Surfactant-Assisted Hydrothermal Synthesis of Dendritic Magnetite Microcrystals. Crystal Growth and Design, 2009, 9, 820-824.	1.4	35
118	Prussian Blue mesocrystals prepared by a facile hydrothermal method. CrystEngComm, 2009, 11, 2257.	1.3	50
119	Metal-Organic Powder Thermochemical Solid-Vapor Architectonics Towards Gradient Hybrid Monolith with Combined Structure-Function Features. SSRN Electronic Journal, 0, , .	0.4	O