Csaba Magyar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4800617/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Assortment of Frontiers in Protein Science. International Journal of Molecular Sciences, 2022, 23, 3685.	4.1	0
2	Origin of Increased Solvent Accessibility of Peptide Bonds in Mutual Synergetic Folding Proteins. International Journal of Molecular Sciences, 2021, 22, 13404.	4.1	2
3	Peptide Binding Sites of Connexin Proteins. Chemistry, 2020, 2, 662-673.	2.2	7
4	Analysis of Heterodimeric "Mutual Synergistic Folding―Complexes. International Journal of Molecular Sciences, 2019, 20, 5136.	4.1	7
5	Physical Background of the Disordered Nature of "Mutual Synergetic Folding―Proteins. International Journal of Molecular Sciences, 2018, 19, 3340.	4.1	6
6	Identification of potential glutaminyl cyclase inhibitors from lead-like libraries by in silico and in vitro fragment-based screening. Molecular Diversity, 2017, 21, 175-186.	3.9	13
7	The role of stabilization centers in protein thermal stability. Biochemical and Biophysical Research Communications, 2016, 471, 57-62.	2.1	9
8	Access Path to the Ligand Binding Pocket May Play a Role in Xenobiotics Selection by AhR. PLoS ONE, 2016, 11, e0146066.	2.5	15
9	Combination of Pharmacophore Matching, 2D Similarity Search, and <i>In Vitro</i> Biological Assays in the Selection of Potential 5â€HT ₆ Antagonists from Large Commercial Repositories. Chemical Biology and Drug Design, 2015, 86, 864-880.	3.2	6
10	Combination of 2D/3D Ligand-Based Similarity Search in Rapid Virtual Screening from Multimillion Compound Repositories. Selection and Biological Evaluation of Potential PDE4 and PDE5 Inhibitors. Molecules, 2014, 19, 7008-7039.	3.8	22
11	Impact of Ligand Protonation on Virtual Screening against β-Secretase (BACE1). Journal of Chemical Information and Modeling, 2007, 47, 2366-2373.	5.4	37
12	Phosphorylation-induced transient intrinsic structure in the kinase-inducible domain of CREB facilitates its recognition by the KIX domain of CBP. Proteins: Structure, Function and Bioinformatics, 2006, 64, 749-757.	2.6	31
13	SRide: a server for identifying stabilizing residues in proteins. Nucleic Acids Research, 2005, 33, W303-W305.	14.5	107
14	Locating the stabilizing residues in (α/β)8 barrel proteins based on hydrophobicity, long-range interactions, and sequence conservation. Proteins: Structure, Function and Bioinformatics, 2004, 55, 316-329.	2.6	73
15	Noncovalent Cross-Links in Context with Other Structural and Functional Elements of Proteins ChemInform, 2004, 35, no.	0.0	0
16	Noncovalent Cross-links in Context with Other Structural and Functional Elements of Proteinsâ€. Journal of Chemical Information and Computer Sciences, 2004, 44, 347-351.	2.8	7
17	Functionally and structurally relevant residues of enzymes: are they segregated or overlapping?. FEBS Letters, 2004, 567, 239-242.	2.8	8
18	Servers for sequence-structure relationship analysis and prediction. Nucleic Acids Research, 2003, 31, 3359-3363.	14.5	12

CSABA MAGYAR

#	Article	IF	CITATIONS
19	SCide: identification of stabilization centers in proteins. Bioinformatics, 2003, 19, 899-900.	4.1	99
20	Increasing the thermal stability of cellulase C using rules learned from thermophilic proteins: a pilot study. Biophysical Chemistry, 2002, 96, 229-241.	2.8	22
21	Stabilization centers and protein stability. Theoretical Chemistry Accounts, 2001, 106, 121-127.	1.4	12
22	Mirror image mutations reveal the significance of an intersubunit ion cluster in the stability of 3-isopropylmalate dehydrogenase. FEBS Letters, 2000, 468, 48-52.	2.8	15
23	Relationship between thermal stability and 3-D structure in a homology model of 3-isopropylmalate dehydrogenase from Escherichia coli. Protein Engineering, Design and Selection, 1996, 9, 663-670.	2.1	12
24	Vibrational analysis for short carbon chains with alternating and cumulenic structure. Synthetic Metals, 1995, 71, 1865-1866.	3.9	43