Ghaleb Adnan Husseini

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4800180/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Ultrasonic drug delivery – a general review. Expert Opinion on Drug Delivery, 2004, 1, 37-56.	5.0	518
2	Micelles and nanoparticles for ultrasonic drug and gene delivery. Advanced Drug Delivery Reviews, 2008, 60, 1137-1152.	13.7	405
3	Factors affecting acoustically triggered release of drugs from polymeric micelles. Journal of Controlled Release, 2000, 69, 43-52.	9.9	216
4	Drug delivery in pluronic micelles: effect of high-frequency ultrasound on drug release from micelles and intracellular uptake. Journal of Controlled Release, 2002, 84, 39-47.	9.9	194
5	Microbial desalination cell technology: A review and a case study. Desalination, 2015, 359, 1-13.	8.2	173
6	The role of cavitation in acoustically activated drug delivery. Journal of Controlled Release, 2005, 107, 253-261.	9.9	145
7	Efficient Immobilization of a Cadmium Chemosensor in a Thin Film:  Generation of a Cadmium Sensor Prototype. Organic Letters, 2005, 7, 1105-1108.	4.6	120
8	A Comprehensive Review on Membrane Fouling: Mathematical Modelling, Prediction, Diagnosis, and Mitigation. Water (Switzerland), 2021, 13, 1327.	2.7	118
9	Anti-cancer Drug Delivery Using Metal Organic Frameworks (MOFs). Current Medicinal Chemistry, 2017, 24, 193-214.	2.4	99
10	Ultrasonic release of doxorubicin from Pluronic P105 micelles stabilized with an interpenetrating network of N,N-diethylacrylamide. Journal of Controlled Release, 2002, 83, 303-305.	9.9	94
11	Kinetics of ultrasonic release of doxorubicin from pluronic P105 micelles. Colloids and Surfaces B: Biointerfaces, 2002, 24, 253-264.	5.0	88
12	The use of ultrasound to release chemotherapeutic drugs from micelles and liposomes. Journal of Drug Targeting, 2015, 23, 16-42.	4.4	79
13	Release of Doxorubicin from Unstabilized and Stabilized Micelles Under the Action of Ultrasound. Journal of Nanoscience and Nanotechnology, 2007, 7, 1028-1033.	0.9	77
14	Stabilization of Pluronic P-105 Micelles with an Interpenetrating Network of N,N-Diethylacrylamide. Macromolecules, 2000, 33, 9306-9309.	4.8	74
15	Drug Delivery Systems Based on Polymeric Micelles and Ultrasound: A Review. Current Pharmaceutical Design, 2016, 22, 2796-2807.	1.9	74
16	Ultrasonic-Activated Micellar Drug Delivery for Cancer Treatment. Journal of Pharmaceutical Sciences, 2009, 98, 795-811.	3.3	71
17	Rapid separation of bacteria from blood—review and outlook. Biotechnology Progress, 2016, 32, 823-839.	2.6	71
18	Synergistic Nanomedicine: Passive, Active, and Ultrasound-Triggered Drug Delivery in Cancer Treatment. Journal of Nanoscience and Nanotechnology, 2016, 16, 1-18.	0.9	67

Ghaleb Adnan Husseini

#	Article	IF	CITATIONS
19	DNA damage induced by micellar-delivered doxorubicin and ultrasound: comet assay study. Cancer Letters, 2000, 154, 211-216.	7.2	66
20	Ultrasonically triggered drug delivery: Breaking the barrier. Colloids and Surfaces B: Biointerfaces, 2014, 123, 364-386.	5.0	65
21	Ultrasound-Responsive Nanocarriers in Cancer Treatment: A Review. ACS Pharmacology and Translational Science, 2021, 4, 589-612.	4.9	65
22	pH-Responsive Nanocarriers in Cancer Therapy. Polymers, 2022, 14, 936.	4.5	63
23	The Use of Ultrasound and Micelles in Cancer Treatment. Journal of Nanoscience and Nanotechnology, 2008, 8, 2205-2215.	0.9	62
24	Biomedical Applications of Metalâ~'Organic Frameworks for Disease Diagnosis and Drug Delivery: A Review. Nanomaterials, 2022, 12, 277.	4.1	61
25	Phase transitions of perfluorocarbon nanoemulsion induced with ultrasound: A mathematical model. Ultrasonics Sonochemistry, 2014, 21, 879-891.	8.2	49
26	Ultrasound-triggered herceptin liposomes for breast cancer therapy. Scientific Reports, 2021, 11, 7545.	3.3	49
27	Investigating the mechanism of acoustically activated uptake of drugs from Pluronic micelles. BMC Cancer, 2002, 2, 20.	2.6	48
28	Optimum ethane recovery in conventional turboexpander process. Chemical Engineering Research and Design, 2010, 88, 779-787.	5.6	47
29	Investigating the acoustic release of doxorubicin from targeted micelles. Colloids and Surfaces B: Biointerfaces, 2013, 101, 153-155.	5.0	47
30	Intracellular uptake of Pluronic copolymer: effects of the aggregation state. Colloids and Surfaces B: Biointerfaces, 2002, 25, 233-241.	5.0	44
31	Phase transitions of nanoemulsions using ultrasound: Experimental observations. Ultrasonics Sonochemistry, 2012, 19, 1120-1125.	8.2	42
32	Encapsulation, Release, and Cytotoxicity of Doxorubicin Loaded in Liposomes, Micelles, and Metal-Organic Frameworks: A Review. Pharmaceutics, 2022, 14, 254.	4.5	42
33	Modeling and Sensitivity Analysis of Acoustic Release of Doxorubicin from Unstabilized Pluronic P105 Using an Artificial Neural Network Model. Technology in Cancer Research and Treatment, 2007, 6, 49-56.	1.9	40
34	Ultrasound-Induced Calcein Release From eLiposomes. Ultrasound in Medicine and Biology, 2012, 38, 2163-2173.	1.5	40
35	Review on Triggered Liposomal Drug Delivery with a Focus on Ultrasound. Current Cancer Drug Targets, 2015, 15, 282-313.	1.6	40
36	Transferrin-modified liposomes triggered with ultrasound to treat HeLa cells. Scientific Reports, 2021, 11, 11589.	3.3	39

3

#	Article	IF	CITATIONS
37	Dual-Targeting and Stimuli-Triggered Liposomal Drug Delivery in Cancer Treatment. ACS Pharmacology and Translational Science, 2021, 4, 1028-1049.	4.9	39
38	The Comet Assay to Determine the Mode of Cell Death for the Ultrasonic Delivery of Doxorubicin to Human Leukemia (HL-60 Cells) from Pluronic P105 Micelles. Technology in Cancer Research and Treatment, 2005, 4, 707-711.	1.9	38
39	Further investigation of the mechanism of Doxorubicin release from P105 micelles using kinetic models. Colloids and Surfaces B: Biointerfaces, 2007, 55, 59-66.	5.0	34
40	Ultrasonically controlled estrone-modified liposomes for estrogen-positive breast cancer therapy. Artificial Cells, Nanomedicine and Biotechnology, 2018, 46, 462-472.	2.8	34
41	Role of frequency and mechanical index in ultrasonic-enhanced chemotherapy in rats. Cancer Chemotherapy and Pharmacology, 2009, 64, 593-600.	2.3	33
42	Using Artificial Neural Networks and Model Predictive Control to Optimize Acoustically Assisted Doxorubicin Release from Polymeric Micelles. Technology in Cancer Research and Treatment, 2009, 8, 479-488.	1.9	33
43	Distribution of Doxorubicin in Rats Undergoing Ultrasonic Drug Delivery. Journal of Pharmaceutical Sciences, 2010, 99, 3122-3131.	3.3	33
44	Effect of Pegylation and Targeting Moieties on the Ultrasound-Mediated Drug Release from Liposomes. ACS Biomaterials Science and Engineering, 2020, 6, 48-57.	5.2	33
45	Over-Pressure Suppresses Ultrasonic-Induced Drug Uptake. Ultrasound in Medicine and Biology, 2009, 35, 409-415.	1.5	31
46	Thermosensitive Polymers and Thermo-Responsive Liposomal Drug Delivery Systems. Polymers, 2022, 14, 925.	4.5	30
47	Ultrasonically controlled albumin-conjugated liposomes for breast cancer therapy. Artificial Cells, Nanomedicine and Biotechnology, 2019, 47, 705-714.	2.8	28
48	Targeting Breast Cancer Using Hyaluronic Acid-Conjugated Liposomes Triggered with Ultrasound. Journal of Biomedical Nanotechnology, 2021, 17, 90-99.	1.1	26
49	Ultrasound in drug and gene delivery. Advanced Drug Delivery Reviews, 2008, 60, 1095-1096.	13.7	25
50	Kinetics and thermodynamics of acoustic release of doxorubicin from non-stabilized polymeric micelles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2010, 359, 18-24.	4.7	25
51	pH and ultrasound dual-responsive drug delivery system based on PEG–folate-functionalized Iron-based metal–organic framework for targeted doxorubicin delivery. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 626, 127062.	4.7	25
52	Degradation kinetics of stabilized Pluronic micelles under the action of ultrasound. Journal of Controlled Release, 2009, 138, 45-48.	9.9	24
53	Use of Model Predictive Control and Artificial Neural Networks to Optimize the Ultrasonic Release of a Model Drug From Liposomes. IEEE Transactions on Nanobioscience, 2017, 16, 149-156.	3.3	24
54	Alkyl Monolayers on Silica Surfaces Prepared Using Neat, Heated Dimethylmonochlorosilanes with Low Vapor Pressures. Langmuir, 2003, 19, 5169-5171.	3.5	23

#	Article	IF	CITATIONS
55	Preliminary Results of Combining Low Frequency Low Intensity Ultrasound and Liposomal Drug Delivery to Treat Tumors in Rats. Journal of Nanoscience and Nanotechnology, 2011, 11, 1866-1870.	0.9	23
56	Ultrasound-Mediated Drug Delivery in Cancer Therapy: A Review. Journal of Nanoscience and Nanotechnology, 2020, 20, 7211-7230.	0.9	22
57	Optimizing the use of ultrasound to deliver chemotherapeutic agents to cancer cells from polymeric micelles. Journal of the Franklin Institute, 2011, 348, 1276-1284.	3.4	21
58	Kinetics of Ultrasonic Drug Delivery from Targeted Micelles. Journal of Nanoscience and Nanotechnology, 2015, 15, 2099-2104.	0.9	21
59	Rapid separation of very low concentrations of bacteria from blood. Journal of Microbiological Methods, 2017, 139, 48-53.	1.6	21
60	Photo-Induced Drug Release from Polymeric Micelles and Liposomes: Phototriggering Mechanisms in Drug Delivery Systems. Polymers, 2022, 14, 1286.	4.5	21
61	Mathematical modeling of microbubble cavitation at 70 kHz and the importance of the subharmonic in drug delivery from micelles. Ultrasonics, 2013, 53, 97-110.	3.9	19
62	Rapid separation of bacteria from blood – Chemical aspects. Colloids and Surfaces B: Biointerfaces, 2017, 154, 365-372.	5.0	18
63	Improving the Efficacy of Anticancer Drugs via Encapsulation and Acoustic Release. Current Topics in Medicinal Chemistry, 2018, 18, 857-880.	2.1	18
64	Exogenous Contrast Agents in Photoacoustic Imaging: An In Vivo Review for Tumor Imaging. Nanomaterials, 2022, 12, 393.	4.1	18
65	Comparing microbubble cavitation at 500 kHz and 70 kHz related to micellar drug delivery using ultrasound. Ultrasonics, 2013, 53, 377-386.	3.9	16
66	Targeting the Folate Receptor: Effects of Conjugating Folic Acid to DOX Loaded Polymeric Micelles. Anti-Cancer Agents in Medicinal Chemistry, 2016, 16, 1275-1280.	1.7	16
67	Predicting the Release of Chemotherapeutics From the Core of Polymeric Micelles Using Ultrasound. IEEE Transactions on Nanobioscience, 2015, 14, 378-384.	3.3	15
68	Green Nanotechnology—A Road Map to Safer Nanomaterials. , 2018, , 133-159.		15
69	Rapid and convenient method for preparing masters for microcontact printing with 1–12â€,μm features. Review of Scientific Instruments, 2004, 75, 3065-3067.	1.3	14
70	Kinetics of acoustic release of doxorubicin from stabilized and unstabilized micelles and the effect of temperature. Journal of the Franklin Institute, 2011, 348, 125-133.	3.4	14
71	Self-aligned mechanical attachment of carbon nanotubes to silicon dioxide structures by selective silicon dioxide chemical-vapor deposition. Applied Physics Letters, 2003, 83, 5307-5309.	3.3	13
72	Synthesis of Metal-Organic Framework from Iron Nitrate and 2,6-Naphthalenedicarboxylic Acid and Its Application as Drug Carrier. Journal of Nanoscience and Nanotechnology, 2018, 18, 5266-5273.	0.9	13

GHALEB ADNAN HUSSEINI

#	Article	IF	CITATIONS
73	Recent Advances in Metal-Organic Frameworks as Anticancer Drug Delivery Systems: A Review. Anti-Cancer Agents in Medicinal Chemistry, 2021, 21, 2487-2504.	1.7	13
74	Modeling of Anti-Cancer Drug Release Kinetics From Liposomes and Micelles: A Review. IEEE Transactions on Nanobioscience, 2021, 20, 565-576.	3.3	12
75	Facile Ultrasound-Triggered Release of Calcein and Doxorubicin from Iron-Based Metal-Organic Frameworks. Journal of Biomedical Nanotechnology, 2020, 16, 1359-1369.	1.1	12
76	Liposomes in Active, Passive and Acoustically-Triggered Drug Delivery. Mini-Reviews in Medicinal Chemistry, 2019, 19, 961-969.	2.4	12
77	Ultrasound-Triggered Liposomes Encapsulating Quantum Dots as Safe Fluorescent Markers for Colorectal Cancer. Pharmaceutics, 2021, 13, 2073.	4.5	12
78	Multifunctional Nanovehicles for Combined 5-Fluorouracil and Gold Nanoparticles Based on the Nanoprecipitation Method. Journal of Nanoscience and Nanotechnology, 2011, 11, 4675-4683.	0.9	10
79	CHAPTER 6. Ultrasound-triggered Release from Micelles. RSC Smart Materials, 2013, , 148-178.	0.1	10
80	Graphene-based drug delivery systems. , 2019, , 149-168.		10
81	Hybrid liposome/metal–organic framework as a promising dual-responsive nanocarriers for anticancer drug delivery. Colloids and Surfaces B: Biointerfaces, 2022, 217, 112599.	5.0	10
82	Analysis of Straw by X-ray Photoelectron Spectroscopy. Surface Science Spectra, 2004, 11, 91-96.	1.3	9
83	Investigating the Fluorescence Quenching of Doxorubicin in Folic Acid Solutions and Its Relation to Ligand-Targeted Nanocarriers. Journal of Nanoscience and Nanotechnology, 2016, 16, 1410-1414.	0.9	9
84	Liposomes as a Promising Ultrasound-Triggered Drug Delivery System in Cancer Treatment. Current Molecular Medicine, 2018, 17, 668-688.	1.3	9
85	Effect of pH, ultrasound frequency and power density on the release of calcein from stealth liposomes. European Journal of Nanomedicine, 2016, 8, .	0.6	8
86	Ultrasound-sensitive cRGD-modified liposomes as a novel drug delivery system. Artificial Cells, Nanomedicine and Biotechnology, 2022, 50, 111-120.	2.8	8
87	Photochemical Lithography:Â Creation of Patterned, Acid Chloride Functionalized Surfaces Using UV Light and Gas-Phase Oxalyl Chloride. Langmuir, 2003, 19, 4856-4858.	3.5	7
88	A case study of a college-wide first-year undergraduate engineering course. European Journal of Engineering Education, 2015, 40, 32-51.	2.3	7
89	Investigating the Stability of eLiposomes at Elevated Temperatures. Technology in Cancer Research and Treatment, 2015, 14, 379-382.	1.9	7
90	Identification of the Uncertainty Structure to Estimate the Acoustic Release of Chemotherapeutics From Polymeric Micelles. IEEE Transactions on Nanobioscience, 2017, 16, 609-617.	3.3	7

#	Article	IF	CITATIONS
91	Multi-Model Investigation and Adaptive Estimation of the Acoustic Release of a Model Drug From Liposomes. IEEE Transactions on Nanobioscience, 2020, 19, 68-77.	3.3	7
92	Investigating the Release Mechanism of Calcein from eLiposomes at Higher Temperatures. Journal of Colloid Science and Biotechnology, 2014, 3, 239-244.	0.2	7
93	Gas Phase Deposition of Trichloro(1H,1H,2H,2H-perfluorooctyl)silane on Silicon Dioxide, by XPS. Surface Science Spectra, 2010, 17, 87-92.	1.3	6
94	Factors affecting sedimentational separation of bacteria from blood. Biotechnology Progress, 2020, 36, e2892.	2.6	6
95	Modeling and Bias-Robust Estimation of the Acoustic Release of Chemotherapeutics from Liposomes. Journal of Biomedical Nanotechnology, 2019, 15, 162-169.	1.1	5
96	Factors Affecting the Acoustic In Vitro Release of Calcein from PEGylated Liposomes. Journal of Nanoscience and Nanotechnology, 2019, 19, 6899-6906.	0.9	5
97	The use of artificial neural networks to control the concentration of a model drug released acoustically. Emergent Materials, 2020, 3, 503-513.	5.7	5
98	Identification of Novel MicroRNAs as Promising Therapeutics for SARS-CoV-2 by Regulating the EGFR-ADAM17 Axis: An <i>In Silico</i> Analysis. ACS Pharmacology and Translational Science, 2021, 4, 396-399.	4.9	5
99	Immunoliposomes: Synthesis, Structure, and their Potential as Drug Delivery Carriers. Current Cancer Therapy Reviews, 2020, 16, 306-319.	0.3	5
100	A case study of a college-wide first year undergraduate engineering course. , 2011, , .		4
101	Mapping of Embedded Functionalized Carbon Nanotubes in Poly(vinyl alcohol)/Nanotube Composite Using Electrostatic Force Microscopy. International Journal of Polymer Analysis and Characterization, 2012, 17, 268-277.	1.9	4
102	Ultrasound-induced doxorubicin release from folate-targeted and non-targeted P105 micelles: a modeling study. European Journal of Nanomedicine, 2016, 8, .	0.6	4
103	Ultrasound-Triggered Immunotherapy for Cancer Treatment: An Update. Current Protein and Peptide Science, 2021, 22, 493-504.	1.4	4
104	Ultrasound-Mediated Cancer Therapeutics Delivery using Micelles and Liposomes: A Review. Recent Patents on Anti-Cancer Drug Discovery, 2021, 16, 498-520.	1.6	4
105	On bubbles and liposomes (June 11, 2007). Journal of Controlled Release, 2008, 125, 174-175.	9.9	3
106	Measuring the Acoustic Release of a Chemotherapeutic Agent from Folate-Targeted Polymeric Micelles. Journal of Nanoscience and Nanotechnology, 2018, 18, 5511-5519.	0.9	3
107	Identification of Novel MicroRNAs Targeting SARS-CoV-2 through the Regulation of TMPRSS2/PI3K/AKT/PTEN Alignment in Lung Cancer: An <i>in Silico</i> Analysis. ACS Pharmacology and Translational Science, 2021, 4, 1075-1078.	4.9	3
108	Analysis of Sugar Beet Pulp by X-ray Photoelectron Spectroscopy. Surface Science Spectra, 2004, 11, 105-111.	1.3	2

#	Article	IF	CITATIONS
109	Growth of 2,2-Biimidazole-Based Nanorods on Mica Substrate. Journal of Nanomaterials, 2010, 2010, 1-7.	2.7	2
110	DNA base-calling using artificial neural networks. , 2011, , .		2
111	Carbohydrate-functionalized Liposomes in Cancer Therapy. Current Cancer Therapy Reviews, 2021, 17, 4-20.	0.3	2
112	The Potential of Ultrasound Technology and Chemotherapy Carriers in Breast Cancer Treatment. , 0, , .		2
113	Microbial Desalination Cell (MDC) in the Presence of Activated Carbon. Advanced Science, Engineering and Medicine, 2014, 6, 1100-1104.	0.3	2
114	Ultrasonic Drug Delivery Using Micelles and Liposomes. , 2016, , 1-35.		2
115	Modeling the Effects of Chemotherapy and Immunotherapy on Tumor Growth. Journal of Biomedical Nanotechnology, 2021, 17, 2505-2518.	1.1	2
116	Alkyl Monolayers on Silica Surfaces Prepared from Neat, Heated 3-Glycidoxypropyldimethylethoxysilane Analyzed by XPS. Surface Science Spectra, 2001, 8, 291-296.	1.3	1
117	Analysis of 5-chloro-8-methoxy-2-(bromomethyl)quinoline by XPS. Surface Science Spectra, 2002, 9, 241-249.	1.3	1
118	Letter to the Editor 2 (July 26, 2007). Journal of Controlled Release, 2008, 125, 175-176.	9.9	1
119	Folic Acid Quenches Doxorubicin Fluorescence Letter to the Editor. Advanced Science Letters, 2012, 7, 726-726.	0.2	1
120	Ultrasonic Drug Delivery Using Micelles and Liposomes. , 2015, , 1-35.		1
121	Preliminary Modeling of Transfer RNA Kinetics in the Cytoplasm of <i>Escherichia coli</i> Bacteria. Advanced Science Letters, 2010, 3, 28-36.	0.2	1
122	Non-Viral Gene Transfection with Ultrasound: Is 100% Transfection Possible?. Advanced Science Letters, 2012, 11, 98-105.	0.2	1
123	Alkyl Monolayers on Silica Surfaces Prepared from Neat, Heated ClSi(CH3)2(CH2)6CH=CH2 Analyzed by XPS. Surface Science Spectra, 2001, 8, 284-290.	1.3	0
124	Alkyl Monolayers on Silica Surfaces Prepared from Neat, Heated ClSi(CH3)2(CH2)17CH3 Analyzed by XPS. Surface Science Spectra, 2001, 8, 274-283.	1.3	0
125	Analysis of 10,16-Diaza-1,4,7,13-tetrathiacyclooctane-9,17-dione by XPS. Surface Science Spectra, 2002, 9, 234-240.	1.3	0
126	Analysis of 7,13-Bis((8-hydroxy-2-quinolinyl)methyl)-1,4-dimethyl-1,4,7,13-tetraaza-10-thiacyclopentadecane by XPS. Surface Science Spectra, 2002, 9, 227-233.	1.3	0

#	Article	IF	CITATIONS
127	Alkyl Monolayers on Silica Surfaces Prepared from Neat, Heated (Tridecafluoro-1,1,2,2-tetrahydrooctyl)-1-dimethylchlorosilane Analyzed by XPS. Surface Science Spectra, 2002, 9, 260-265.	1.3	0
128	Analysis of Shea Nut Shells by X-ray Photoelectron Spectroscopy. Surface Science Spectra, 2004, 11, 112-118.	1.3	0
129	Analysis of Grain Screenings by X-ray Photoelectron Spectroscopy. Surface Science Spectra, 2004, 11, 97-104.	1.3	0
130	Analysis of Sunflower Shells by X-ray Photoelectron Spectroscopy. Surface Science Spectra, 2004, 11, 119-126.	1.3	0
131	Analysis of Sawdust by X-ray Photoelectron Spectroscopy. Surface Science Spectra, 2004, 11, 127-134.	1.3	0
132	DNA base-calling using polynomial classifiers. , 2010, , .		0
133	Ultrasonic Drug Delivery Using Micelles and Liposomes. , 2016, , 1127-1161.		0
134	Possible Physical Mechanisms of tRNA Pre-Selection in the Cytoplasm of <1>Escherichia coli 1 Bacteria. Advanced Science Letters, 2010, 3, 37-42.	0.2	0