
Fenghua Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4799633/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The S-enantiomer of R,S-citalopram, increases inhibitor binding to the human serotonin transporter by an allosteric mechanism. Comparison with other serotonin transporter inhibitors. European Neuropsychopharmacology, 2005, 15, 193-198.	0.3	139
2	Repeated electroconvulsive seizures increase the total number of synapses in adult male rat hippocampus. European Neuropsychopharmacology, 2009, 19, 329-338.	0.3	133
3	Characterization of an allosteric citalopram-binding site at the serotonin transporter. Journal of Neurochemistry, 2005, 92, 21-28.	2.1	97
4	Imipramine treatment increases the number of hippocampal synapses and neurons in a genetic animal model of depression. Hippocampus, 2010, 20, 1376-1384.	0.9	87
5	Changes in rat hippocampal CA1 synapses following imipramine treatment. Hippocampus, 2008, 18, 631-639.	0.9	48
6	Hippocampal volume and cell number in depression, schizophrenia, and suicide subjects. Brain Research, 2020, 1727, 146546.	1.1	48
7	Quantitative hippocampal structural changes following electroconvulsive seizure treatment in a rat model of depression. Synapse, 2012, 66, 667-676.	0.6	45
8	Mitochondrial plasticity of the hippocampus in a genetic rat model of depression after antidepressant treatment. Synapse, 2013, 67, 127-134.	0.6	38
9	S-Ketamine Reverses Hippocampal Dendritic Spine Deficits in Flinders Sensitive Line Rats Within 1Âh of Administration. Molecular Neurobiology, 2019, 56, 7368-7379.	1.9	38
10	A new efficient method for synaptic vesicle quantification reveals differences between medial prefrontal cortex perforated and nonperforated synapses. Journal of Comparative Neurology, 2014, 522, 284-297.	0.9	35
11	Vortioxetine promotes early changes in dendritic morphology compared to fluoxetine in rat hippocampus. European Neuropsychopharmacology, 2016, 26, 234-245.	0.3	34
12	Chronic Desipramine Prevents Acute Stress-Induced Reorganization of Medial Prefrontal Cortex Architecture by Blocking Glutamate Vesicle Accumulation and Excitatory Synapse Increase. International Journal of Neuropsychopharmacology, 2015, 18, .	1.0	24
13	Mitochondria Are Critical for BDNF-Mediated Synaptic and Vascular Plasticity of Hippocampus following Repeated Electroconvulsive Seizures. International Journal of Neuropsychopharmacology, 2018, 21, 291-304.	1.0	23
14	Vortioxetine promotes maturation of dendritic spines inÂvitro: A comparative study in hippocampal cultures. Neuropharmacology, 2016, 103, 143-154.	2.0	19
15	A Critical Role of Mitochondria in BDNF-Associated Synaptic Plasticity After One-Week Vortioxetine Treatment. International Journal of Neuropsychopharmacology, 2018, 21, 603-615.	1.0	16
16	Sustained Ultrastructural Changes in Rat Hippocampal Formation After Repeated Electroconvulsive Seizures. International Journal of Neuropsychopharmacology, 2020, 23, 446-458.	1.0	10
17	Ultrastructure and mitochondrial numbers in pre- and postpubertal pig oocytes. Reproduction, Fertility and Development, 2016, 28, 586.	0.1	7
18	Structural Plasticity and Molecular Markers in Hippocampus of Male Rats after Acute Stress. Neuroscience, 2020, 438, 100-115.	1.1	4

#	Article	IF	CITATIONS
19	The rat hippocampal gliovascular system following one week vortioxetine and fluoxetine. European Neuropsychopharmacology, 2021, 42, 45-56.	0.3	3