Yousef Kazemzadeh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4799467/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A review on the application of carbonated water injection for EOR purposes: Opportunities and challenges. Journal of Petroleum Science and Engineering, 2022, 214, 110481.	4.2	5
2	Effect of pressure on the optimal salinity point of the aqueous phase in emulsion formation. Journal of Molecular Liquids, 2022, 362, 119783.	4.9	9
3	Mini Review of Miscible Condition Evaluation and Experimental Methods of Gas Miscible Injection in Conventional and Fractured Reservoirs. Energy & Fuels, 2021, 35, 7340-7363.	5.1	12
4	Increasing inhibition performance of simultaneous precipitation of calcium and strontium sulfate scales using a new inhibitor — Laboratory and field application. Journal of Petroleum Science and Engineering, 2021, 202, 108589.	4.2	19
5	Positive coupling effect in gas condensate flow: Role of capillary number, Scheludko number and Weber number. Journal of Petroleum Science and Engineering, 2021, 203, 108490.	4.2	5
6	Development of a new chemical solvent package for increasing the asphaltene removal performance under static and dynamic conditions. Journal of Petroleum Science and Engineering, 2021, 206, 109066.	4.2	21
7	Formation and stability of W/O emulsions in presence of asphaltene at reservoir thermodynamic conditions. Journal of Molecular Liquids, 2020, 299, 112125.	4.9	36
8	Study of Asphaltene Precipitation during CO ₂ Injection into Oil Reservoirs in the Presence of Iron Oxide Nanoparticles by Interfacial Tension and Bond Number Measurements. ACS Omega, 2020, 5, 7877-7884.	3.5	14
9	Review on application of nanoparticles for EOR purposes: A critical review of the opportunities and challenges. Chinese Journal of Chemical Engineering, 2019, 27, 237-246.	3.5	125
10	Experimental investigation of stability of water in oil emulsions at reservoir conditions: Effect of ion type, ion concentration, and system pressure. Fuel, 2019, 243, 15-27.	6.4	52
11	An experimental study toward possible benefits of water in oil emulsification in heavy oil reservoirs: comparing role of ions and nanoparticles. Materials Research Express, 2019, 6, 085702.	1.6	8
12	Experimental investigation into Fe3O4/SiO2 nanoparticle performance and comparison with other nanofluids in enhanced oil recovery. Petroleum Science, 2019, 16, 578-590.	4.9	40
13	A Complete experimental study of oil/water interfacial properties in the presence of TiO ₂ nanoparticles and different ions. Oil and Gas Science and Technology, 2019, 74, 39.	1.4	23
14	A new insight into Fe3O4-based nanocomposites for adsorption of asphaltene at the oil/water interface: An experimental interfacial study. Journal of Petroleum Science and Engineering, 2019, 177, 786-797.	4.2	44
15	Optimization of Fe ₃ O ₄ /Chitosan nanocomposite concentration on the formation and stability of W/O emulsion. Materials Research Express, 2019, 6, 035031.	1.6	8
16	Experimental investigation of interfacial properties in the EOR mechanisms by the novel synthesized Fe3O4@Chitosan nanocomposites. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 544, 15-27.	4.7	105
17	How ZrO2 nanoparticles improve the oil recovery by affecting the interfacial phenomena in the reservoir conditions?. Journal of Molecular Liquids, 2018, 252, 158-168.	4.9	70
18	Detecting high-potential conditions of asphaltene precipitation in oil reservoir. Journal of Dispersion Science and Technology, 2018, 39, 943-951.	2.4	4

Yousef Kazemzadeh

#	ARTICLE	IF	CITATIONS
19	How do metal oxide nanoparticles influence on interfacial tension of asphaltic oil-Supercritical CO2 systems?. Journal of Supercritical Fluids, 2018, 135, 1-7.	3.2	14
20	Potential effects of metal oxide/SiO2 nanocomposites in EOR processes at different pressures. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 559, 372-384.	4.7	77
21	Mutual Effects of Fe ₃ O ₄ /Chitosan Nanocomposite and Different Ions in Water for Stability of Water-in-Oil (w/o) Emulsions at Low–High Salinities. Energy & Fuels, 2018, 32, 12101-12117.	5.1	39
22	Impact of natural convection and diffusion on variation of oil composition through a fractured model. Scientia Iranica, 2016, 23, 2811-2819.	0.4	2
23	Comprehensive Water–Alternating-Gas (WAG) injection study to evaluate the most effective method based on heavy oil recovery and asphaltene precipitation tests. Journal of Petroleum Science and Engineering, 2015, 133, 123-129.	4.2	57
24	An interface-analyzing technique to evaluate the heavy oil swelling in presence of nickel oxide nanoparticles. Journal of Molecular Liquids, 2015, 211, 553-559.	4.9	24
25	Behavior of Asphaltene Adsorption onto the Metal Oxide Nanoparticle Surface and Its Effect on Heavy Oil Recovery. Industrial & Engineering Chemistry Research, 2015, 54, 233-239.	3.7	129
26	Impact of Fe3O4 nanoparticles on asphaltene precipitation during CO2 injection. Journal of Natural Gas Science and Engineering, 2015, 22, 227-234.	4.4	63
27	Experimental study of asphaltene precipitation prediction during gas injection to oil reservoirs by interfacial tension measurement. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 466, 138-146.	4.7	53
28	Experimental Investigation of the Effect of Asphaltene and Normal Paraffin on CO2-Oil Interfacial Tension. Journal of Dispersion Science and Technology, 2014, , 141217111959003.	2.4	5
29	A New Approach for Evaluating Migration of Nano Particles in Porous Media. Journal of Dispersion Science and Technology, 0, , .	2.4	3