Zhi-He Dou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4799188/publications.pdf

Version: 2024-02-01

	840776	839539
397	11	18
citations	h-index	g-index
38	38	206
docs citations	times ranked	citing authors
	citations 38	397 11 citations h-index 38 38

#	Article	IF	CITATIONS
1	A new method of preparing NdB6 ultra-fine powders. Rare Metals, 2022, 41, 2363-2369.	7.1	1
2	In-Situ Synthesis and Characterizations of a Novel Aluminum Bronze Composite Reinforced with Micro-Size Tungsten Particles. Jom, 2022, 74, 4146-4153.	1.9	2
3	Progress in the Preparation of Large-Size High-Performance CuCr Alloys. Advances in Materials Science and Engineering, 2022, 2022, 1-18.	1.8	5
4	Research Progress on the Extractive Metallurgy of Titanium and Its Alloys. Mineral Processing and Extractive Metallurgy Review, 2021, 42, 535-551.	5.0	16
5	Multistage desulfurization mechanism to reduce sulfur content of high ferrotitanium prepared using thermite method. Rare Metals, 2021, 40, 2313-2319.	7.1	5
6	Self-propagating reaction mechanism of Mg–TiO2 system in preparation process of titanium powder by multi-stage reduction. Rare Metals, 2021, 40, 2645-2656.	7.1	6
7	Mechanisms of Metal-Slag Separation Behavior in Thermite Reduction for Preparation of TiAl Alloy. Journal of Materials Engineering and Performance, 2021, 30, 9315-9325.	2.5	4
8	Leaching of rare earths from mechanochemically decomposed bastnaesite. Minerals Engineering, 2020, 145, 106052.	4.3	6
9	Kinetic study on bastnaesite concentrate mechanochemical decomposition in NaOH solution. Journal of Rare Earths, 2020, 38, 418-426.	4.8	1
10	Utilization Rate of Magnesium in Hot Metal Desulfurization by Magnesium Vapor Injection. ISIJ International, 2020, 60, 915-921.	1.4	4
11	Basic study on direct preparation of lithium carbonate powders by membrane electrolysis. Hydrometallurgy, 2020, 191, 105193.	4.3	10
12	Effect of Sample Preparation Pressure on Transformation Law of Low-Valent Titanium Oxide in a Multi-Stage Reduction Process. Metals, 2020, 10, 1259.	2.3	1
13	Effect of magnesium injection process on hot metal desulfurization. Journal of Iron and Steel Research International, 2020, 27, 1391-1399.	2.8	5
14	Mechanism of Melt Separation in Preparation of Low-Oxygen High Titanium Ferroalloy Prepared by Multistage and Deep Reduction. Metals, 2020, 10, 309.	2.3	7
15	Physical simulation of bubble refinement in bottom blowing process with mechanical agitation. Journal of Iron and Steel Research International, 2020, 27, 1137-1144.	2.8	5
16	Kinetics of hot metal desulfurization by bottom-blowing magnesium vapor. Journal of Iron and Steel Research International, 2020, 27, 392-401.	2.8	5
17	Mechanochemical decomposition of mixed rare earth concentrate in the NaOH-CaO-H2O system. Hydrometallurgy, 2019, 189, 105116.	4.3	7
18	Process and Kinetic Assessment of Vanadium Extraction from Vanadium Slag Using Calcification Roasting and Sodium Carbonate Leaching. Jom, 2019, 71, 4600-4607.	1.9	20

#	Article	IF	CITATIONS
19	Formation Mechanism and Distribution of Al and O in the Ferrotitanium with Different Ti Contents Prepared by Thermite Method. Jom, 2019, 71, 3584-3589.	1.9	11
20	Decomposition process of bastnaesite concentrate in NaOH CaO H2O system. Journal of Rare Earths, 2019, 37, 760-766.	4.8	3
21	Mechanochemical decomposition on (rare earth) bastnaesite concentrate in NaOH solution. Minerals Engineering, 2019, 137, 27-33.	4.3	11
22	Oxygen content of high ferrotitanium prepared by thermite method with different melt separation temperatures. Rare Metals, 2019, 38, 892-898.	7.1	9
23	A novel continuous and controllable method for fabrication of as-cast TiAl alloy. Journal of Alloys and Compounds, 2019, 789, 266-275.	5.5	16
24	Decomposition mechanism of a mixed rare earth concentrate with sodium hydroxide in the microwave heating process. Minerals Engineering, 2019, 132, 220-227.	4.3	17
25	Distribution and Control Mechanism of Al and O Residuals in Ferrotitanium Prepared by Aluminothermic Reduction with Insufficient Al. Jom, 2019, 71, 809-814.	1.9	6
26	Deoxidation Mechanism in Reduced Titanium Powder Prepared by Multistage Deep Reduction of TiO2. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2019, 50, 282-290.	2.1	12
27	Sulfur distribution in preparation of high titanium ferroalloy by thermite method with different CaO additions. Rare Metals, 2019, 38, 793-799.	7.1	9
28	Microwave strengthens decomposition of mixed rare earth concentrate: Microwave absorption characteristics. Journal of Rare Earths, 2019, 37, 541-546.	4.8	23
29	Study of the Mechanochemical Calcification for Mixed Rare Earth Concentrate. Minerals, Metals and Materials Series, 2018, , 77-86.	0.4	0
30	A new method for direct synthesis of Li2CO3 powders by membrane electrolysis. Rare Metals, 2018, 37, 716-722.	7.1	6
31	Leaching kinetics of rare earth elements and fluoride from mixed rare earth concentrate after roasting with calcium hydroxide and sodium hydroxide. Hydrometallurgy, 2017, 173, 15-21.	4.3	46
32	Influence of microwave heating on the extractions of fluorine and Rare Earth elements from mixed rare earth concentrate. Hydrometallurgy, 2016, 162, 104-110.	4.3	23
33	Estimation Model for Electrical Conductivity of CaF2-CaO-Al2O3 Slags. Jom, 2016, 68, 2365-2370.	1.9	5
34	Decomposition of the mixed rare earth concentrate by microwave-assisted method. Journal of Rare Earths, 2016, 34, 529-535.	4.8	38
35	Al Control in High Titanium Ferro with Low Oxygen Prepared by Thermite Reaction. , 2015, , 11-17.		2
36	Study on leaching rare earths from bastnaesite treated by calcification transition. Journal of Rare Earths, 2014, 32, 1043-1047.	4.8	20

ZHI-HE Dou

#	Article	IF	CITATION
37	Preparation of CeB6 nano-powders by self-propagating high-temperature synthesis (SHS). Journal of Rare Earths, 2011, 29, 986-990.	4.8	18
38	Preparation of CuCr alloys by thermit-reduction electromagnetic stirring. International Journal of Minerals, Metallurgy, and Materials, 2007, 14, 538-542.	0.2	12