Jennifer Tickner

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4798909/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	An overview of the regulation of bone remodelling at the cellular level. Clinical Biochemistry, 2012, 45, 863-873.	0.8	408
2	Wnt signalling in osteoblasts regulates expression of the receptor activator of NFκB ligand and inhibits osteoclastogenesis in vitro. Journal of Cell Science, 2006, 119, 1283-1296.	1.2	307
3	Hypoxia is a major stimulator of osteoclast formation and bone resorption. Journal of Cellular Physiology, 2003, 196, 2-8.	2.0	269
4	Hypoxia inhibits the growth, differentiation and bone-forming capacity of rat osteoblasts. Experimental Cell Research, 2006, 312, 1693-1702.	1.2	254
5	Acidosis Inhibits Bone Formation by Osteoblasts In Vitro by Preventing Mineralization. Calcified Tissue International, 2005, 77, 167-174.	1.5	224
6	Angiogenic factors in bone local environment. Cytokine and Growth Factor Reviews, 2013, 24, 297-310.	3.2	208
7	Pseurotin A Inhibits Osteoclastogenesis and Prevents Ovariectomized-Induced Bone Loss by Suppressing Reactive Oxygen Species. Theranostics, 2019, 9, 1634-1650.	4.6	165
8	Loureirin B suppresses RANKL-induced osteoclastogenesis and ovariectomized osteoporosis via attenuating NFATc1 and ROS activities. Theranostics, 2019, 9, 4648-4662.	4.6	141
9	Hypoxia stimulates vesicular ATP release from rat osteoblasts. Journal of Cellular Physiology, 2009, 220, 155-162.	2.0	125
10	Extracellular Nucleotides Block Bone Mineralization in Vitro: Evidence for Dual Inhibitory Mechanisms Involving Both P2Y2 Receptors and Pyrophosphate. Endocrinology, 2007, 148, 4208-4216.	1.4	119
11	EGFL6 Promotes Endothelial Cell Migration and Angiogenesis through the Activation of Extracellular Signal-regulated Kinase. Journal of Biological Chemistry, 2011, 286, 22035-22046.	1.6	95
12	Dihydroartemisinin, an Anti-Malaria Drug, Suppresses Estrogen Deficiency-Induced Osteoporosis, Osteoclast Formation, and RANKL-Induced Signaling Pathways. Journal of Bone and Mineral Research, 2016, 31, 964-974.	3.1	88
13	Hypoxia stimulates osteoclast formation from human peripheral blood. Cell Biochemistry and Function, 2010, 28, 374-380.	1.4	85
14	The emerging roles of hnRNPK. Journal of Cellular Physiology, 2020, 235, 1995-2008.	2.0	85
15	The role of SATB2 in skeletogenesis and human disease. Cytokine and Growth Factor Reviews, 2014, 25, 35-44.	3.2	64
16	Mechanical Stress Regulates Bone Metabolism Through MicroRNAs. Journal of Cellular Physiology, 2017, 232, 1239-1245.	2.0	57
17	MiRâ€214 is an important regulator of the musculoskeletal metabolism and disease. Journal of Cellular Physiology, 2019, 234, 231-245.	2.0	49
18	Cyanidin Chloride inhibits ovariectomyâ€induced osteoporosis by suppressing RANKLâ€mediated osteoclastogenesis and associated signaling pathways. Journal of Cellular Physiology, 2018, 233, 2502-2512.	2.0	48

JENNIFER TICKNER

#	Article	IF	CITATIONS
19	Neohesperidin suppresses osteoclast differentiation, bone resorption and ovariectomised-induced osteoporosis in mice. Molecular and Cellular Endocrinology, 2017, 439, 369-378.	1.6	47
20	EGFL7: Master regulator of cancer pathogenesis, angiogenesis and an emerging mediator of bone homeostasis. Journal of Cellular Physiology, 2018, 233, 8526-8537.	2.0	46
21	SC-514, a selective inhibitor of IKKβ attenuates RANKL-induced osteoclastogenesis and NF-κB activation. Biochemical Pharmacology, 2013, 86, 1775-1783.	2.0	42
22	EGFL7 Is Expressed in Bone Microenvironment and Promotes Angiogenesis via ERK, STAT3, and Integrin Signaling Cascades. Journal of Cellular Physiology, 2015, 230, 82-94.	2.0	40
23	Triptolide inhibits osteoclast formation, bone resorption, RANKL-mediated NF-Ò>B activation and titanium particle-induced osteolysis in a mouse model. Molecular and Cellular Endocrinology, 2015, 399, 346-353.	1.6	37
24	The Emerging Role of MORC Family Proteins in Cancer Development and Bone Homeostasis. Journal of Cellular Physiology, 2017, 232, 928-934.	2.0	35
25	Madecassoside inhibits estrogen deficiencyâ€induced osteoporosis by suppressing <scp>RANKL</scp> â€induced osteoclastogenesis. Journal of Cellular and Molecular Medicine, 2019, 23, 380-394.	1.6	34
26	<i>Cistanche deserticola</i> polysaccharide attenuates osteoclastogenesis and bone resorption via inhibiting RANKL signaling and reactive oxygen species production. Journal of Cellular Physiology, 2018, 233, 9674-9684.	2.0	32
27	New therapeutic opportunities from dissecting the pre-B leukemia bone marrow microenvironment. Leukemia, 2018, 32, 2326-2338.	3.3	32
28	Nox2-derived ROS in PPARÎ ³ signaling and cell-cycle progression of lung alveolar epithelial cells. Free Radical Biology and Medicine, 2011, 51, 763-772.	1.3	31
29	HtrA1 is upregulated during RANKLâ€induced osteoclastogenesis, and negatively regulates osteoblast differentiation and BMP2â€induced Smad1/5/8, ERK and p38 phosphorylation. FEBS Letters, 2014, 588, 143-150.	1.3	30
30	Berberine Sulfate Attenuates Osteoclast Differentiation through RANKL Induced NF-κB and NFAT Pathways. International Journal of Molecular Sciences, 2015, 16, 27087-27096.	1.8	29
31	Morc3 mutant mice exhibit reduced cortical area and thickness, accompanied by altered haematopoietic stem cells niche and bone cell differentiation. Scientific Reports, 2016, 6, 25964.	1.6	29
32	Eriodictyol Inhibits RANKLâ€Induced Osteoclast Formation and Function Via Inhibition of NFATc1 Activity. Journal of Cellular Physiology, 2016, 231, 1983-1993.	2.0	28
33	<i>Asiaticoside</i> , a component of <i>Centella asiatica</i> attenuates RANKLâ€induced osteoclastogenesis via NFATc1 and NFâ€ <i>κ</i> B signaling pathways. Journal of Cellular Physiology, 2019, 234, 4267-4276.	2.0	28
34	Bajijiasu Abrogates Osteoclast Differentiation via the Suppression of RANKL Signaling Pathways through NF-κB and NFAT. International Journal of Molecular Sciences, 2017, 18, 203.	1.8	25
35	Achyranthes bidentata polysaccharide suppresses osteoclastogenesis and bone resorption via inhibiting RANKL signaling. Journal of Cellular Biochemistry, 2018, 119, 4826-4835.	1.2	25
36	Choline Kinase β Mutant Mice Exhibit Reduced Phosphocholine, Elevated Osteoclast Activity, and Low Bone Mass. Journal of Biological Chemistry, 2015, 290, 1729-1742.	1.6	24

Jennifer Tickner

#	Article	IF	CITATIONS
37	Nitidine chloride prevents OVX-induced bone loss via suppressing NFATc1-mediated osteoclast differentiation. Scientific Reports, 2016, 6, 36662.	1.6	24
38	NPNT is Expressed by Osteoblasts and Mediates Angiogenesis via the Activation of Extracellular Signal-regulated Kinase. Scientific Reports, 2016, 6, 36210.	1.6	24
39	Poria cocos polysaccharide attenuates RANKL-induced osteoclastogenesis by suppressing NFATc1 activity and phosphorylation of ERK and STAT3. Archives of Biochemistry and Biophysics, 2018, 647, 76-83.	1.4	23
40	Loss of Protein Kinase C-δ Protects against LPS-Induced Osteolysis Owing to an Intrinsic Defect in Osteoclastic Bone Resorption. PLoS ONE, 2013, 8, e70815.	1.1	23
41	Protein Kinase C Inhibitor, GF109203X Attenuates Osteoclastogenesis, Bone Resorption and RANKLâ€Induced NFâ€₽̂B and NFAT Activity. Journal of Cellular Physiology, 2015, 230, 1235-1242.	2.0	22
42	Asiatic Acid Inhibits OVX-Induced Osteoporosis and Osteoclastogenesis Via Regulating RANKL-Mediated NF-κb and Nfatc1 Signaling Pathways. Frontiers in Pharmacology, 2020, 11, 331.	1.6	22
43	Osteoblast-derived EGFL6 couples angiogenesis to osteogenesis during bone repair. Theranostics, 2021, 11, 9738-9751.	4.6	20
44	The emerging role of NPNT in tissue injury repair and bone homeostasis. Journal of Cellular Physiology, 2018, 233, 1887-1894.	2.0	19
45	Advanced Genetic Approaches in Discovery and Characterization of Genes Involved With Osteoporosis in Mouse and Human. Frontiers in Genetics, 2019, 10, 288.	1.1	18
46	Hypothermia inhibits osteoblast differentiation and bone formation but stimulates osteoclastogenesis. Experimental Cell Research, 2012, 318, 2237-2244.	1.2	17
47	Helvolic acid attenuates osteoclast formation and function via suppressing RANKLâ€induced NFATc1 activation. Journal of Cellular Physiology, 2019, 234, 6477-6488.	2.0	17
48	Astilbin prevents bone loss in ovariectomized mice through the inhibition of RANKLâ€induced osteoclastogenesis. Journal of Cellular and Molecular Medicine, 2019, 23, 8355-8368.	1.6	16
49	Fangchinoline protects against bone loss in OVX mice via inhibiting osteoclast formation, bone resorption and RANKL-induced signaling. International Journal of Biological Sciences, 2020, 16, 309-319.	2.6	16
50	Molecular structure and differential function of choline kinases CHKα and CHKβ in musculoskeletal system and cancer. Cytokine and Growth Factor Reviews, 2017, 33, 65-72.	3.2	14
51	Cajaninstilbene acid inhibits osteoporosis through suppressing osteoclast formation and RANKLâ€induced signaling pathways. Journal of Cellular Physiology, 2019, 234, 11792-11804.	2.0	14
52	Protein kinase C delta null mice exhibit structural alterations in articular surface, intra-articular and subchondral compartments. Arthritis Research and Therapy, 2015, 17, 210.	1.6	13
53	Natural Germacrane Sesquiterpenes Inhibit Osteoclast Formation, Bone Resorption, RANKL-Induced NF-κB Activation, and IκBα Degradation. International Journal of Molecular Sciences, 2015, 16, 26599-26607.	1.8	13
54	Calmodulin interacts with Rab3D and modulates osteoclastic bone resorption. Scientific Reports, 2016, 6, 37963.	1.6	13

4

JENNIFER TICKNER

#	Article	IF	CITATIONS
55	Asperpyrone A attenuates RANKLâ€induced osteoclast formation through inhibiting NFATc1, Ca ²⁺ signalling and oxidative stress. Journal of Cellular and Molecular Medicine, 2019, 23, 8269-8279.	1.6	13
56	PKC-Î′ deficiency in B cells displays osteopenia accompanied with upregulation of RANKL expression and osteoclast–osteoblast uncoupling. Cell Death and Disease, 2020, 11, 762.	2.7	12
57	Modulating calcium-mediated NFATc1 and mitogen-activated protein kinase deactivation underlies the inhibitory effects of kavain on osteoclastogenesis and bone resorption. Journal of Cellular Physiology, 2019, 234, 789-801.	2.0	11
58	Cumambrin A prevents OVXâ€induced osteoporosis <i>via</i> the inhibition of osteoclastogenesis, bone resorption, and RANKL signaling pathways. FASEB Journal, 2019, 33, 6726-6735.	0.2	11
59	Prolactin Expression in the Cochlea of Aged BALB/c Mice Is Gender Biased and Correlates to Loss of Bone Mineral Density and Hearing Loss. PLoS ONE, 2013, 8, e63952.	1.1	11
60	Bafilomycin A1 Attenuates Osteoclast Acidification and Formation, Accompanied by Increased Levels of SQSTM1/p62 Protein. Journal of Cellular Biochemistry, 2016, 117, 1464-1470.	1.2	9
61	Lumichrome inhibits osteoclastogenesis and bone resorption through suppressing RANKLâ€induced NFAT activation and calcium signaling. Journal of Cellular Physiology, 2018, 233, 8971-8983.	2.0	9
62	Fumitremorgin C Attenuates Osteoclast Formation and Function via Suppressing RANKL-Induced Signaling Pathways. Frontiers in Pharmacology, 2020, 11, 238.	1.6	8
63	Age related changes in gene expression within the cochlea of C57BL/6J mice. Aging Clinical and Experimental Research, 2012, 24, 603-11.	1.4	8
64	Conditional Knockout of PKC-δ in Osteoclasts Favors Bone Mass Accrual in Males Due to Decreased Osteoclast Function. Frontiers in Cell and Developmental Biology, 2020, 8, 450.	1.8	6
65	Choline kinase beta is an important regulator of bone homeostasis. Bone, 2010, 47, S444.	1.4	2
66	An effective and practical immunohistochemical protocol for bone specimens characterized by hyaluronidase and pepsin predigestion combined with alkaline phosphatase-mediated chromogenic detection. Histology and Histopathology, 2015, 30, 331-43.	0.5	1