Jie Yang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4798718/publications.pdf

Version: 2024-02-01

51	3,206 citations	430442	315357
papers	citations	h-index	g-index
53	53	53	2764
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Deep Learning for Super-Resolution Channel Estimation and DOA Estimation Based Massive MIMO System. IEEE Transactions on Vehicular Technology, 2018, 67, 8549-8560.	3.9	552
2	Data-Driven Deep Learning for Automatic Modulation Recognition in Cognitive Radios. IEEE Transactions on Vehicular Technology, 2019, 68, 4074-4077.	3.9	498
3	Deep-Learning-Based Millimeter-Wave Massive MIMO for Hybrid Precoding. IEEE Transactions on Vehicular Technology, 2019, 68, 3027-3032.	3.9	363
4	Flight Delay Prediction Based on Aviation Big Data and Machine Learning. IEEE Transactions on Vehicular Technology, 2020, 69, 140-150.	3.9	209
5	Fast Beamforming Design via Deep Learning. IEEE Transactions on Vehicular Technology, 2020, 69, 1065-1069.	3.9	186
6	LightAMC: Lightweight Automatic Modulation Classification via Deep Learning and Compressive Sensing. IEEE Transactions on Vehicular Technology, 2020, 69, 3491-3495.	3.9	180
7	DSF-NOMA: UAV-Assisted Emergency Communication Technology in a Heterogeneous Internet of Things. IEEE Internet of Things Journal, 2019, 6, 5508-5519.	5 . 5	175
8	Unsupervised Learning-Based Fast Beamforming Design for Downlink MIMO. IEEE Access, 2019, 7, 7599-7605.	2.6	170
9	Deep Learning-Inspired Message Passing Algorithm for Efficient Resource Allocation in Cognitive Radio Networks. IEEE Transactions on Vehicular Technology, 2019, 68, 641-653.	3.9	156
10	Behavioral Modeling and Linearization of Wideband RF Power Amplifiers Using BiLSTM Networks for 5G Wireless Systems. IEEE Transactions on Vehicular Technology, 2019, 68, 10348-10356.	3.9	149
11	Deep Learning-Based Cooperative Automatic Modulation Classification Method for MIMO Systems. IEEE Transactions on Vehicular Technology, 2020, 69, 4575-4579.	3.9	83
12	A Mobility Analytical Framework for Big Mobile Data in Densely Populated Area. IEEE Transactions on Vehicular Technology, 2017, 66, 1443-1455.	3.9	78
13	Distributed Learning for Automatic Modulation Classification in Edge Devices. IEEE Wireless Communications Letters, 2020, 9, 2177-2181.	3.2	55
14	Deep Learning for Risk Detection and Trajectory Tracking at Construction Sites. IEEE Access, 2019, 7, 30905-30912.	2.6	52
15	Dynamic User Grouping-Based NOMA Over Rayleigh Fading Channels. IEEE Access, 2019, 7, 110964-110971.	2.6	44
16	Deep Learning Aided Method for Automatic Modulation Recognition. IEEE Access, 2019, 7, 109063-109068.	2.6	34
17	MUSAI- <inline-formula> <tex-math notation="LaTeX">\${L}_{{1/2}}\$ </tex-math> </inline-formula> : MUltiple Sub-Wavelet-Dictionaries-Based Adaptively-Weighted Iterative Half Thresholding Algorithm for Compressive Imaging. IEEE Access, 2018, 6, 16795-16805.	2.6	27
18	Adaptive Deep Learning Aided Digital Predistorter Considering Dynamic Envelope. IEEE Transactions on Vehicular Technology, 2020, 69, 4487-4491.	3.9	21

#	Article	IF	CITATIONS
19	Deep Learning-Aided OCR Techniques for Chinese Uppercase Characters in the Application of Internet of Things. IEEE Access, 2019, 7, 47043-47049.	2.6	19
20	Secrecy Outage Analysis of Transmit Antenna Selection Assisted With Wireless Power Beacon. IEEE Transactions on Vehicular Technology, 2020, 69, 7473-7482.	3.9	15
21	Emotion Recognition Based on Double Tree Complex Wavelet Transform and Machine Learning in Internet of Things. IEEE Access, 2019, 7, 154114-154120.	2.6	14
22	Spear and Shield: Attack and Detection for CNN-Based High Spatial Resolution Remote Sensing Images Identification. IEEE Access, 2019, 7, 94583-94592.	2.6	12
23	Object-Level Trajectories Based Fine-Grained Action Recognition in Visual IoT Applications. IEEE Access, 2019, 7, 103629-103638.	2.6	11
24	Convolutional Neural Network Aided Signal Modulation Recognition in OFDM Systems. , 2020, , .		11
25	ShuffleNet-inspired lightweight neural network design for automatic modulation classification methods in ubiquitous IoT cyber–physical systems. Computer Communications, 2021, 176, 249-257.	3.1	11
26	Sparse Adaptive Iteratively-Weighted Thresholding Algorithm (SAITA) for L p -Regularization Using the Multiple Sub-Dictionary Representation. Sensors, 2017, 17, 2920.	2.1	10
27	Differentiable Architecture Search-Based Automatic Modulation Classification. , 2021, , .		9
28	IRIS: Smart Phone Aided Intelligent Reimbursement System Using Deep Learning. IEEE Access, 2019, 7, 165635-165645.	2.6	6
29	Robust automatic modulation classification based on convolutional and recurrent fusion network. Physical Communication, 2020, 43, 101213.	1.2	6
30	Deep Learning Aided System Design Method for Intelligent Reimbursement Robot. IEEE Access, 2019, 7, 96232-96239.	2.6	5
31	Smart Phone-Based Intelligent Invoice Classification Method Using Deep Learning. IEEE Access, 2019, 7, 118046-118054.	2.6	5
32	Joint multislice and cooperative detection aided RFID method based on deep learning. Physical Communication, 2020, 42, 101153.	1.2	5
33	Automatic Classification and Recognition Method based on Partially-Connected Differentiable Architecture Search for ISAC Systems. , 2021, , .		5
34	An effective hybrid V2V/V2I transmission latency method based on LSTM neural network. Physical Communication, 2022, 51, 101562.	1.2	4
35	Reconciliation Problem in Polar Integrated Navigation Considering Coordinate Frame Transformation. IEEE Transactions on Vehicular Technology, 2020, 69, 10375-10379.	3.9	3
36	Device Type Identification via Network Traffic and Lightweight Convolutional Neural Network for Internet of Things. IEEE Access, 2020, 8, 200219-200228.	2.6	3

#	Article	IF	Citations
37	Implementation of Mesh Flying Ad-hoc Network For Emergency Communication Systems. , 2020, , .		3
38	MobileNet and Knowledge Distillation-Based Automatic Scenario Recognition Method in Vehicle-to-Vehicle Systems. IEEE Transactions on Vehicular Technology, 2022, 71, 11006-11016.	3.9	3
39	Handover Strategy Based on Side Information in Air-Ground Integrated Vehicular Networks. IEEE Transactions on Vehicular Technology, 2022, 71, 10823-10831.	3.9	3
40	Federated user activity analysis via network traffic and deep neural network in mobile wireless networks. Physical Communication, 2021, 48, 101438.	1.2	2
41	Multi-Rate Compression for Downlink CSI Based on Transfer Learning in FDD Massive MIMO Systems. , 2021, , .		2
42	Radio Frequency Fingerprint Identification Method Based on Ensemble Learning., 2022,,.		2
43	A weighted-beam-superposition method for mmWave massive MIMO-NOMA systems. Physical Communication, 2021, , 101488.	1.2	1
44	Chinese License Plate Recognition System Design Based on YOLOv4 and CRNN + CTC Algorithm. Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, 2021, , 855-865.	e 0.2	1
45	Fast Beamforming Design Method for IRS-Aided mmWave MISO Systems. , 2021, , .		1
46	HSRRS Classification Method Based on Deep Transfer Learning And Multi-Feature Fusion., 2021,,.		1
47	Hierarchical Gradient Similarity Based Video Quality Assessment Metric. Algorithms, 2017, 10, 72.	1.2	0
48	Improved Efficient Dictionary Learning with Cross-Label and Group Regularization. Lecture Notes in Electrical Engineering, 2020, , 50-58.	0.3	0
49	Decentralized Learning-based Scenario Identification Method for Intelligent Vehicular Communications., 2021,,.		0
50	An Effective Radar Signal Recognition Method Using Neural Architecture Search., 2021,,.		0
51	Deep Learning for Adaptive Modulation and Coding with Payload Length in Vehicle-to-Vehicle Communications Systems., 2021,,.		0