
Graham P Holloway

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4798642/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A theoretical argument to support the biological benefits for insulin stimulating mitochondrial oxidative phosphorylation. Current Opinion in Physiology, 2022, 25, 100491.	1.8	1
2	Nitrate consumption preserves HFD-induced skeletal muscle mitochondrial ADP sensitivity and lysine acetylation: A potential role for SIRT1. Redox Biology, 2022, 52, 102307.	9.0	9
3	Insulin rapidly increases skeletal muscle mitochondrial ADP sensitivity in the absence of a high lipid environment. Biochemical Journal, 2021, 478, 2539-2553.	3.7	11
4	Independent of mitochondrial respiratory function, dietary nitrate attenuates HFD-induced lipid accumulation and mitochondrial ROS emission within the liver. American Journal of Physiology - Endocrinology and Metabolism, 2021, 321, E217-E228.	3.5	8
5	Revisiting the contribution of mitochondrial biology to the pathophysiology of skeletal muscle insulin resistance. Biochemical Journal, 2021, 478, 3809-3826.	3.7	5
6	Ablating the Rabâ€GTPase activating protein TBC1D1 predisposes rats to highâ€fat dietâ€induced cardiomyopathy. Journal of Physiology, 2020, 598, 683-697.	2.9	4
7	Shortâ€ŧerm bed restâ€induced insulin resistance cannot be explained by increased mitochondrial H ₂ O ₂ emission. Journal of Physiology, 2020, 598, 123-137.	2.9	32
8	Low-load resistance training to task failure with and without blood flow restriction: muscular functional and structural adaptations. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2020, 318, R284-R295.	1.8	28
9	Are Alterations in Skeletal Muscle Mitochondria a Cause or Consequence of Insulin Resistance?. International Journal of Molecular Sciences, 2020, 21, 6948.	4.1	30
10	<i>In vitro</i> ketoneâ€supported mitochondrial respiration is minimal when other substrates are readily available in cardiac and skeletal muscle. Journal of Physiology, 2020, 598, 4869-4885.	2.9	32
11	Adipose Tissue Inflammation Is Directly Linked to Obesity-Induced Insulin Resistance, while Gut Dysbiosis and Mitochondrial Dysfunction Are Not Required. Function, 2020, 1, zqaa013.	2.3	12
12	Long-term, high-fat feeding exacerbates short-term increases in adipose mitochondrial reactive oxygen species, without impairing mitochondrial respiration. American Journal of Physiology - Endocrinology and Metabolism, 2020, 319, E376-E387.	3.5	19
13	Acute insulin deprivation results in altered mitochondrial substrate sensitivity conducive to greater fatty acid transport. American Journal of Physiology - Endocrinology and Metabolism, 2020, 319, E345-E353.	3.5	9
14	Nitrate attenuates high fat dietâ€induced glucose intolerance in association with reduced epididymal adipose tissue inflammation and mitochondrial reactive oxygen species emission. Journal of Physiology, 2020, 598, 3357-3371.	2.9	18
15	Revisiting Mitochondrial Bioenergetics: Experimental Considerations for Biological Interpretation. Function, 2020, 2, zqaa044.	2.3	Ο
16	Blood flow restricted resistance exercise and reductions in oxygen tension attenuate mitochondrial H ₂ O ₂ emission rates in human skeletal muscle. Journal of Physiology, 2019, 597, 3985-3997.	2.9	31
17	Supplementation with dietary ωâ€3 mitigates immobilizationâ€induced reductions in skeletal muscle mitochondrial respiration in young women. FASEB Journal, 2019, 33, 8232-8240.	0.5	40
18	High intensity exercise inhibits carnitine palmitoyltransferase-I sensitivity to <scp>l</scp> -carnitine. Biochemical Journal, 2019, 476, 547-558.	3.7	17

#	Article	IF	CITATIONS
19	Dietary feeding pattern does not modulate the loss of muscle mass or the decline in metabolic health during short-term bed rest. American Journal of Physiology - Endocrinology and Metabolism, 2019, 316, E536-E545.	3.5	22
20	Exercise-induced reductions in mitochondrial ADP sensitivity contribute to the induction of gene expression and mitochondrial biogenesis through enhanced mitochondrial H2O2 emission. Mitochondrion, 2019, 46, 116-122.	3.4	20
21	New tools for an old question: dependence of ATP and bicarbonate for branched-chain keto acids oxidation. Biochemical Journal, 2019, 476, 2235-2237.	3.7	Ο
22	Age-Associated Impairments in Mitochondrial ADP Sensitivity Contribute to Redox Stress in Senescent Human Skeletal Muscle. Cell Reports, 2018, 22, 2837-2848.	6.4	86
23	α-linolenic acid supplementation prevents exercise-induced improvements in white adipose tissue mitochondrial bioenergetics and whole-body glucose homeostasis in obese Zucker rats. Diabetologia, 2018, 61, 433-444.	6.3	13
24	Sodium nitrate supplementation alters mitochondrial H ₂ O ₂ emission but does not improve mitochondrial oxidative metabolism in the heart of healthy rats. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2018, 315, R191-R204.	1.8	15
25	Sex differences in mitochondrial respiratory function in human skeletal muscle. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2018, 314, R909-R915.	1.8	70
26	High-Fat Diet Causes Mitochondrial Dysfunction as a Result of Impaired ADP Sensitivity. Diabetes, 2018, 67, 2199-2205.	0.6	68
27	Mitochondrial-derived reactive oxygen species influence ADP sensitivity, but not CPT-I substrate sensitivity. Biochemical Journal, 2018, 475, 2997-3008.	3.7	12
28	The Rab-GTPase activating protein, TBC1D1, is critical for maintaining normal glucose homeostasis and β-cell mass. Applied Physiology, Nutrition and Metabolism, 2017, 42, 647-655.	1.9	11
29	αâ€Linolenic acid and exercise training independently, and additively, decrease blood pressure and prevent diastolic dysfunction in obese Zucker rats. Journal of Physiology, 2017, 595, 4351-4364.	2.9	19
30	Nutrition and Training Influences on the Regulation of Mitochondrial Adenosine Diphosphate Sensitivity and Bioenergetics. Sports Medicine, 2017, 47, 13-21.	6.5	25
31	Controlling skeletal muscle CPT-I malonyl-CoA sensitivity: the importance of AMPK-independent regulation of intermediate filaments during exercise. Biochemical Journal, 2017, 474, 557-569.	3.7	15
32	Ablating the protein TBC1D1 impairs contraction-induced sarcolemmal glucose transporter 4 redistribution but not insulin-mediated responses in rats. Journal of Biological Chemistry, 2017, 292, 16653-16664.	3.4	49
33	Postprandial control of fatty acid transport proteins' subcellular location is not dependent on insulin. FEBS Letters, 2016, 590, 2661-2670.	2.8	8
34	In the absence of phosphate shuttling, exercise reveals the <i>in vivo</i> importance of creatine-independent mitochondrial ADP transport. Biochemical Journal, 2016, 473, 2831-2843.	3.7	30
35	LA and ALA prevent glucose intolerance in obese male rats without reducing reactive lipid content, but cause tissue-specific changes in fatty acid composition. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2016, 310, R619-R630.	1.8	20
36	One Week of Bed Rest Leads to Substantial Muscle Atrophy and Induces Whole-Body Insulin Resistance in the Absence of Skeletal Muscle Lipid Accumulation. Diabetes, 2016, 65, 2862-2875.	0.6	267

GRAHAM P HOLLOWAY

#	Article	IF	CITATIONS
37	Extremely rapid increase in fatty acid transport and intramyocellular lipid accumulation but markedly delayed insulin resistance after high fat feeding in rats. Diabetologia, 2015, 58, 2381-2391.	6.3	62
38	Rapid Repression of ADP Transport by Palmitoyl-CoA Is Attenuated by Exercise Training in Humans: A Potential Mechanism to Decrease Oxidative Stress and Improve Skeletal Muscle Insulin Signaling. Diabetes, 2015, 64, 2769-2779.	0.6	31
39	In adipose tissue, increased mitochondrial emission of reactive oxygen species is important for short-term high-fat diet-induced insulin resistance in mice. Diabetologia, 2015, 58, 1071-1080.	6.3	85
40	Both linoleic and α-linolenic acid prevent insulin resistance but have divergent impacts on skeletal muscle mitochondrial bioenergetics in obese Zucker rats. American Journal of Physiology - Endocrinology and Metabolism, 2014, 307, E102-E114.	3.5	40
41	High-Fat Diet–Induced Mitochondrial Biogenesis Is Regulated by Mitochondrial-Derived Reactive Oxygen Species Activation of CaMKII. Diabetes, 2014, 63, 1907-1913.	0.6	72
42	Impairments in mitochondrial palmitoyl oA respiratory kinetics that precede development of diabetic cardiomyopathy are prevented by resveratrol in ZDF rats. Journal of Physiology, 2014, 592, 2519-2533.	2.9	44
43	Submaximal ADPâ€ s timulated respiration is impaired in ZDF rats and recovered by resveratrol. Journal of Physiology, 2013, 591, 6089-6101.	2.9	32
44	Over-Expressing Mitofusin-2 in Healthy Mature Mammalian Skeletal Muscle Does Not Alter Mitochondrial Bioenergetics. PLoS ONE, 2013, 8, e55660.	2.5	17
45	ldentification of a novel malonyl-CoA IC50 for CPT-I: implications for predicting <i>inÂvivo</i> fatty acid oxidation rates. Biochemical Journal, 2012, 448, 13-20.	3.7	36
46	Mitochondrial creatine kinase activity and phosphate shuttling are acutely regulated by exercise in human skeletal muscle. Journal of Physiology, 2012, 590, 5475-5486.	2.9	65
47	Repeated transient mRNA bursts precede increases in transcriptional and mitochondrial proteins during training in human skeletal muscle. Journal of Physiology, 2010, 588, 4795-4810.	2.9	431
48	FAT/CD36-null mice reveal that mitochondrial FAT/CD36 is required to upregulate mitochondrial fatty acid oxidation in contracting muscle. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2009, 297, R960-R967.	1.8	63
49	In obese rat muscle transport of palmitate is increased and is channeled to triacylglycerol storage despite an increase in mitochondrial palmitate oxidation. American Journal of Physiology - Endocrinology and Metabolism, 2009, 296, E738-E747.	3.5	92
50	Skeletal muscle mitochondrial FAT/CD36 content and palmitate oxidation are not decreased in obese women. American Journal of Physiology - Endocrinology and Metabolism, 2007, 292, E1782-E1789.	3.5	121