Junjun Guo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4798457/publications.pdf

Version: 2024-02-01

36 papers	743 citations	471371 17 h-index	27 g-index
36	36	36	432 citing authors
all docs	docs citations	times ranked	

#	Article	IF	CITATIONS
1	Experimental and numerical investigations on oxy-coal combustion in a 35 MW large pilot boiler. Fuel, 2017, 187, 315-327.	3.4	84
2	Numerical investigation on oxy-combustion characteristics of a 200MWe tangentially fired boiler. Fuel, 2015, 140, 660-668.	3.4	73
3	A full spectrum k-distribution based weighted-sum-of-gray-gases model for oxy-fuel combustion. International Journal of Heat and Mass Transfer, 2015, 90, 218-226.	2.5	57
4	Global reaction mechanisms for MILD oxy-combustion of methane. Energy, 2018, 147, 839-857.	4.5	46
5	A full spectrum k-distribution based non-gray radiative property model for fly ash particles. International Journal of Heat and Mass Transfer, 2018, 118, 103-115.	2.5	35
6	Evaluation, development, and validation of a new reduced mechanism for methane oxy-fuel combustion. International Journal of Greenhouse Gas Control, 2018, 78, 327-340.	2.3	35
7	Evaluation, development, and application of a new skeletal mechanism for fuel-NO formation under air and oxy-fuel combustion. Fuel Processing Technology, 2020, 199, 106256.	3.7	34
8	Exergy-based control strategy selection for flue gas recycle in oxy-fuel combustion plant. Fuel, 2015, 161, 87-96.	3.4	26
9	New Dependence of NO Emissions on the Equivalence Ratio in Moderate or Intense Low-Oxygen Dilution Combustion. Energy & Samp; Fuels, 2018, 32, 12905-12918.	2.5	26
10	Numerical Investigation on Development of Initial Ash Deposition Layer for a High-Alkali Coal. Energy & Energy	2.5	25
11	Experimental and Numerical Investigations on Heat Transfer Characteristics of a 35MW Oxy-fuel Combustion Boiler. Energy Procedia, 2017, 114, 481-489.	1.8	24
12	Optimal Equivalence Ratio to Minimize NO Emission during Moderate or Intense Low-Oxygen Dilution Combustion. Energy & Emp; Fuels, 2018, 32, 4478-4492.	2.5	24
13	A compatible configuration strategy for burner streams in a 200†MWe tangentially fired oxy-fuel combustion boiler. Applied Energy, 2018, 220, 59-69.	5.1	23
14	Oxy-Fuel Combustion Characteristics of Pulverized Coal in a 3 MW Pilot-Scale Furnace. Energy & Samp; Fuels, 2018, 32, 10522-10529.	2.5	22
15	A full spectrum k-distribution based non-gray radiative property model for unburnt char. Proceedings of the Combustion Institute, 2019, 37, 3081-3089.	2.4	21
16	Detailed investigation of NO mechanism in non-premixed oxy-fuel jet flames with CH4/H2 fuelÂblends. International Journal of Hydrogen Energy, 2018, 43, 8534-8557.	3.8	19
17	Effects of gas and particle radiation on IFRF 2.5ÂMW swirling flame under oxy-fuel combustion. Fuel, 2020, 263, 116634.	3.4	18
18	Experiments and kinetic modeling of NO reburning by CH4 under high CO2 concentration in a jet-stirred reactor. Fuel, 2020, 270, 117476.	3.4	18

#	Article	IF	Citations
19	Reaction Characteristics and MILD Combustion of Residual Char in a Pilot-Scale Furnace. Energy & Energy & Fuels, 2019, 33, 12791-12800.	2.5	16
20	Numerical investigation of pressure effects on soot formation in laminar coflow ethylene/air diffusion flames. Fuel, 2021, 292, 120176.	3.4	14
21	Assessment of weighted-sum-of-gray-gases models for gas-soot mixture in jet diffusion flames. International Journal of Heat and Mass Transfer, 2021, 181, 121907.	2.5	13
22	Opportunities and Challenges of Oxy-fuel Combustion. , 2018, , 1-12.		11
23	Experimental and numerical study of polycyclic aromatic hydrocarbon formation in ethylene laminar co-flow diffusion flames. Fuel, 2021, 289, 119931.	3.4	11
24	A full spectrum <i>k</i> â€distributionâ€based weightedâ€sumâ€ofâ€grayâ€gases model for pressurized oxyâ€fo combustion. International Journal of Energy Research, 2021, 45, 3410-3420.	uel 2.2	11
25	Experimental and kinetic study of NO-reburning by syngas under high CO2 concentration in a jet stirred reactor. Fuel, 2021, 304, 121403.	3.4	10
26	The effect of preheating temperature on PAH/soot formation in methane/air co-flow flames at elevated pressure. Fuel, 2022, 313, 122656.	3.4	8
27	A consistent soot nucleation model for improved prediction of strain rate sensitivity in ethylene/air counterflow flames. Aerosol Science and Technology, 2022, 56, 636-654.	1.5	8
28	Low-temperature oxidation chemistry of 2,4,4-trimethyl-1-pentene (diisobutylene) triggered by dimethyl ether (DME): A jet-stirred reactor oxidation and kinetic modeling investigation. Combustion and Flame, 2021, 234, 111629.	2.8	7
29	Dynamic Modeling on the Mode Switching Strategy of a 35 MW _{th} Oxy-fuel Combustion Pilot Plant. Energy & Energy & 2020, 34, 2260-2271.	2.5	6
30	Non-gray chemical composition based radiative property model of fly ash particles. Proceedings of the Combustion Institute, 2021, 38, 4281-4290.	2.4	5
31	Experimental and kinetic modeling study of $\hat{A}\hat{I}$ ±-methyl-naphthalene pyrolysis: Part II. PAH formation. Combustion and Flame, 2021, 233, 111530.	2.8	5
32	An analysis of soot formation pathways in laminar coflow ethylene flame at higher pressures. , 2020, , .		3
33	Experimental and kinetic modeling study of $\hat{Al}\pm$ -methyl-naphthalene pyrolysis: Part I. Formation of monocyclic aromatics and small species. Combustion and Flame, 2021, 233, 111587.	2.8	3
34	Heat Transfer During Oxy-fuel Combustion and Boiler Design. , 2018, , 189-208.		1
35	Flame Characteristics of Oxy-fuel Combustion and Burner Design. , 2018, , 171-187.		1
36	Flame-controlling continuation method for extinction of counterflow sooting flames with detailed chemistry. , 2022, , .		0