
Núria Roglans

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4797912/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	ChREBPâ€driven DNL and PNPLA3 Expression Induced by Liquid Fructose are Essential in the Production of Fatty Liver and Hypertriglyceridemia in a Highâ€Fat Dietâ€Fed Rat Model. Molecular Nutrition and Food Research, 2022, 66, e2101115.	3.3	12
2	El Ã _l cido bempedoico como activador PPARα: Nuevas perspectivas para el tratamiento de la esteatosis hepĂ¡tica en un modelo experimental de rata hembra. ClÃnica E Investigación En Arteriosclerosis, 2022, 34, 57-67.	0.8	3
3	Bempedoic acid as a PPARα activator: New perspectives for hepatic steatosis treatment in a female rat experimental model. ClÃnica E Investigación En Arteriosclerosis (English Edition), 2022, , .	0.2	2
4	Chronic liquid fructose supplementation does not cause liver tumorigenesis but elicits clear sex differences in the metabolic response in Sprague–Dawley rats. Food and Nutrition Research, 2021, 65, .	2.6	1
5	Effects of a Low Dose of Caffeine Alone or as Part of a Green Coffee Extract, in a Rat Dietary Model of Lean Non-Alcoholic Fatty Liver Disease without Inflammation. Nutrients, 2020, 12, 3240.	4.1	23
6	Low-density lipoprotein receptor-related protein 1 deficiency in cardiomyocytes reduces susceptibility to insulin resistance and obesity. Metabolism: Clinical and Experimental, 2020, 106, 154191.	3.4	7
7	Mesenteric arterial dysfunction in the UC Davis Type 2 Diabetes Mellitus rat model is dependent on pre-diabetic versus diabetic status and is sexually dimorphic. European Journal of Pharmacology, 2020, 879, 173089.	3.5	6
8	Liquid fructose and liver insulin signaling: Molecular mechanisms controlling hepatic steatosis. , 2019, , 149-172.		3
9	Effects of Maternal Fructose Intake on Perinatal ER-Stress: A Defective XBP1s Nuclear Translocation Affects the ER-stress Resolution. Nutrients, 2019, 11, 1935.	4.1	6
10	mTOR is a Key Protein Involved in the Metabolic Effects of Simple Sugars. International Journal of Molecular Sciences, 2019, 20, 1117.	4.1	37
11	Chronic fructose intake does not induce liver steatosis and inflammation in female Sprague–Dawley rats, but causes hypertriglyceridemia related to decreased VLDL receptor expression. European Journal of Nutrition, 2019, 58, 1283-1297.	3.9	11
12	Impairment of Novel Object Recognition Memory and Brain Insulin Signaling in Fructose- but Not Glucose-Drinking Female Rats. Molecular Neurobiology, 2018, 55, 6984-6999.	4.0	37
13	Chronic Liquid Fructose, but not Glucose, Supplementation Selectively Induces Visceral Adipose Tissue Leptin Resistance and Hypertrophy in Female Spragueâ€Dawley Rats. Molecular Nutrition and Food Research, 2018, 62, e1800777.	3.3	14
14	Type of supplemented simple sugar, not merely calorie intake, determines adverse effects on metabolism and aortic function in female rats. American Journal of Physiology - Heart and Circulatory Physiology, 2017, 312, H289-H304.	3.2	30
15	Liquid fructose in Western-diet-fed mice impairs liver insulin signaling and causes cholesterol and triglyceride loading without changing calorie intake and body weight. Journal of Nutritional Biochemistry, 2017, 40, 105-115.	4.2	27
16	The Addition of Liquid Fructose to a Western-Type Diet in LDL-Râ^'/â^' Mice Induces Liver Inflammation and Fibrogenesis Markers without Disrupting Insulin Receptor Signalling after an Insulin Challenge. Nutrients, 2017, 9, 278.	4.1	9
17	Human hepatic lipase overexpression in mice induces hepatic steatosis and obesity through promoting hepatic lipogenesis and white adipose tissue lipolysis and fatty acid uptake. PLoS ONE, 2017, 12, e0189834.	2.5	21
18	Liquid fructose in pregnancy exacerbates fructose-induced dyslipidemia in adult female offspring. Journal of Nutritional Biochemistry, 2016, 32, 115-122.	4.2	22

NúRIA ROGLANS

#	Article	IF	CITATIONS
19	Fructose during pregnancy provokes fetal oxidative stress: The key role of the placental heme oxygenase-1. Molecular Nutrition and Food Research, 2016, 60, 2700-2711.	3.3	23
20	Fructose, but not glucose, impairs insulin signaling in the three major insulin-sensitive tissues. Scientific Reports, 2016, 6, 26149.	3.3	75
21	Fructose only in pregnancy provokes hyperinsulinemia, hypoadiponectinemia, and impaired insulin signaling in adult male, but not female, progeny. European Journal of Nutrition, 2016, 55, 665-674.	3.9	27
22	Liquid fructose supplementation in LDL-Râ^'/â^' mice fed a western-type diet enhances lipid burden and atherosclerosis despite identical calorie consumption. IJC Metabolic & Endocrine, 2015, 9, 12-21.	0.5	8
23	Fructose supplementation impairs rat liver autophagy through mTORC activation without inducing endoplasmic reticulum stress. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2015, 1851, 107-116.	2.4	43
24	Simple Sugar Intake and Hepatocellular Carcinoma: Epidemiological and Mechanistic Insight. Nutrients, 2014, 6, 5933-5954.	4.1	34
25	Liquid fructose down-regulates liver insulin receptor substrate 2 and gluconeogenic enzymes by modifying nutrient sensing factors in rats. Journal of Nutritional Biochemistry, 2014, 25, 250-258.	4.2	36
26	Liquid fructose downregulates Sirt1 expression and activity and impairs the oxidation of fatty acids in rat and human liver cells. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2014, 1841, 514-524.	2.4	37
27	Fructose during pregnancy affects maternal and fetal leptin signaling. Journal of Nutritional Biochemistry, 2013, 24, 1709-1716.	4.2	48
28	Way back for fructose and liver metabolism: Bench side to molecular insights. World Journal of Gastroenterology, 2012, 18, 6552.	3.3	39
29	PPARα activation improves endothelial dysfunction and reduces fibrosis and portal pressure in cirrhotic rats. Journal of Hepatology, 2012, 56, 1033-1039.	3.7	73
30	Metabolic Alterations and Increased Liver mTOR Expression Precede the Development of Autoimmune Disease in a Murine Model of Lupus Erythematosus. PLoS ONE, 2012, 7, e51118.	2.5	26
31	Reduction of liver fructokinase expression and improved hepatic inflammation and metabolism in liquid fructose-fed rats after atorvastatin treatment. Toxicology and Applied Pharmacology, 2011, 251, 32-40.	2.8	54
32	Tissue factor pathway inhibitor 2 is induced by thrombin in human macrophages. Biochimica Et Biophysica Acta - Molecular Cell Research, 2011, 1813, 1254-1260.	4.1	17
33	Liver AMP/ATP ratio and fructokinase expression are related to gender differences in AMPK activity and glucose intolerance in rats ingesting liquid fructose. Journal of Nutritional Biochemistry, 2011, 22, 741-751.	4.2	86
34	Evolución temporal de marcadores metabólicos y de enfermedad autoinmune en un modelo de lupus eritematoso. ClÃnica E Investigación En Arteriosclerosis, 2010, 22, 233-240.	0.8	1
35	Activación de PP2A y alteraciones metabólicas inducidas por la ingestión de fructosa en forma lÃquida. ClÃnica E Investigación En Arteriosclerosis, 2009, 21, 87-96.	0.8	0
36	Suppressor of cytokine signaling-3 (SOCS-3) and a deficit of serine/threonine (Ser/Thr) phosphoproteins involved in leptin transduction mediate the effect of fructose on rat liver lipid metabolism. Hepatology, 2008, 48, 1506-1516.	7.3	79

3

NúRIA ROGLANS

#	Article	IF	CITATIONS
37	Resistencia a la leptina: eje MAPK-AMPK y fosforilación de STAT-3 en Ser727 en rata alimentada con fructosa. ClÃnica E Investigación En Arteriosclerosis, 2008, 20, 223-232.	0.8	2
38	Ritonavir Increases CD36, ABCA1 and CYP27 Expression in THP-1 Macrophages. Experimental Biology and Medicine, 2008, 233, 1572-1582.	2.4	11
39	Hepatic Gene Expression Changes in an Experimental Model of Accelerated Senescence: The SAM-P8 Mouse. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2008, 63, 1043-1052.	3.6	3
40	Hypertriglyceridemia and Hepatic Steatosis in Senescence-Accelerated Mouse Associate to Changes in Lipid-Related Gene Expression. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2007, 62, 1219-1227.	3.6	11
41	Reducción en la actividad de transactivación y transrepresión de PPARα en un modelo experimental de sÃndrome metabólico por fructosa dietética. ClÃnica E Investigación En Arteriosclerosis, 2007, 19, 1-12.	0.8	3
42	Impairment of hepatic Stat-3 activation and reduction of PPARα activity in fructose-fed rats. Hepatology, 2007, 45, 778-788.	7.3	206
43	Ageing introduces a complex pattern of changes in several rat brain transcription factors depending on gender and anatomical localization. Experimental Gerontology, 2006, 41, 372-379.	2.8	9
44	Atorvastatin reverses age-related reduction in rat hepatic PPAR $\hat{l}\pm$ and HNF-4. British Journal of Pharmacology, 2005, 145, 853-861.	5.4	61
45	Different response of senescent female Sprague–Dawley rats to gemfibrozil and rosiglitazone administration. Experimental Gerontology, 2005, 40, 588-598.	2.8	6
46	Paradoxical exacerbation of combined hyperlipidemia in human apolipoprotein A-II transgenic mice treated with fenofibrate. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2005, 1737, 130-137.	2.4	20
47	Prevention of age-related changes in rat cortex transcription factor activator protein-1 by hypolipidemic drugs. Biochemical Pharmacology, 2004, 68, 1411-1421.	4.4	17
48	Fibrates modify the expression of key factors involved in bile-acid synthesis and biliary-lipid secretion in gallstone patients. European Journal of Clinical Pharmacology, 2004, 59, 855-861.	1.9	59
49	Gemfibrozil increases the specific binding of rat-cortex nuclear extracts to a PPRE probe. Life Sciences, 2003, 73, 2927-2937.	4.3	9
50	Atorvastatin Treatment Induced Peroxisome Proliferator-Activated Receptor α Expression and Decreased Plasma Nonesterified Fatty Acids and Liver Triglyceride in Fructose-Fed Rats. Journal of Pharmacology and Experimental Therapeutics, 2002, 302, 232-239.	2.5	119
51	High doses of atorvastatin and simvastatin induce key enzymes involved in VLDL production. Lipids, 2002, 37, 445-454.	1.7	52
52	Fibrate treatment does not modify the expression of acyl coenzyme A oxidase in human liver. Clinical Pharmacology and Therapeutics, 2002, 72, 692-701.	4.7	36
53	Bezafibrate induces acyl-CoA oxidase mRNA levels and fatty acid peroxisomal beta-oxidation in rat white adipose tissue. Molecular and Cellular Biochemistry, 2001, 216, 71-78.	3.1	33
54	Differential induction of stearoyl-CoA desaturase and acyl-CoA oxidase genes by fibrates in HepG2 cells. Biochemical Pharmacology, 2001, 61, 357-364.	4.4	12

#	ARTICLE	IF	CITATIONS
55	acyl-CoA oxidase; Apo, apolipoprotein; APRŤ, adenosyl phosphoribosyl transferase; CT, CTP:phosphocholine cytidylyl transferase; HDL, high-density lipoprotein; HMG-CoA Rd, 3-hydroxy-3-methyl-glutaryl coenzyme A reductase; LDL, low-density lipoprotein; PAP, phosphatidate phosphohydrolase; PPARα, peroxisome proliferator-activated receptor; SREBP, sterol regulatory	4.4	17
56	element binding protein; and VLDL, very-low-d. Biochemical Pharmacology, 2001, 62, 803-809. Uncoupling Protein-3 mRNA Levels Are Increased in White Adipose Tissue and Skeletal Muscle of Bezafibrate-Treated Rats. Biochemical and Biophysical Research Communications, 1999, 260, 547-556.	2.1	45