
IllÃ;n-GÃ3mez Mj

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4797710/publications.pdf Version: 2024-02-01

ILLÄIN-CÄ3MEZ MI

#	Article	IF	CITATIONS
1	Improving the Performance of BaMnO3 Perovskite as Soot Oxidation Catalyst Using Carbon Black during Sol-Gel Synthesis. Nanomaterials, 2022, 12, 219.	4.1	10
2	Analyzing the role of copper in the soot oxidation performance of BaMnO3-perovskite-based catalyst obtained by modified sol-gel synthesis. Fuel, 2022, 328, 125258.	6.4	13
3	Heterogeneous Photocatalytic Degradation of Ibuprofen Over TiO2–Ag Supported on Activated Carbon from Waste Tire Rubber. Topics in Catalysis, 2021, 64, 51-64.	2.8	7
4	NOx Storage on BaTi0.8Cu0.2O3 Perovskite Catalysts: Addressing a Feasible Mechanism. Nanomaterials, 2021, 11, 2133.	4.1	3
5	Promotion of La(Cu0.7Mn0.3)0.98M0.02O3â^î^´ (M = Pd, Pt, Ru and Rh) perovskite catalysts by noble metals for the reduction of NO by CO. Journal of Catalysis, 2019, 379, 18-32.	6.2	32
6	BaTi0.8B0.2O3 (B = Mn, Fe, Co, Cu) LNT Catalysts: Effect of Partial Ti Substitution on NOx Storage Capacity. Catalysts, 2019, 9, 365.	3.5	2
7	Tolerance and regeneration versus SO2 of Ba0.9A0.1Ti0.8Cu0.2O3 (A = Sr, Ca, Mg) LNT catalysts. Applie Catalysis A: General, 2019, 577, 113-123.	d 4.3	10
8	BaFe1-xCuxO3 Perovskites as Active Phase for Diesel (DPF) and Gasoline Particle Filters (GPF). Nanomaterials, 2019, 9, 1551.	4.1	12
9	BaFe1â^'xCuxO3 Perovskites as Soot Oxidation Catalysts for Gasoline Particulate Filters (GPF): A Preliminary Study. Topics in Catalysis, 2019, 62, 413-418.	2.8	16
10	BaTi0.8Cu0.2O3 Catalysts for NO Oxidation and NOx Storage: Effect of Synthesis Method. Topics in Catalysis, 2017, 60, 220-224.	2.8	6
11	Copper doped BaMnO ₃ perovskite catalysts for NO oxidation and NO ₂ -assisted diesel soot removal. RSC Advances, 2017, 7, 35228-35238.	3.6	51
12	Tailoring the properties of BaTi0.8Cu0.2O3 catalyst selecting the synthesis method. Applied Catalysis A: General, 2016, 519, 7-15.	4.3	20
13	BaTi1â [~] 'xCuxO3 perovskites: The effect of copper content in the properties and in the NOx storage capacity. Applied Catalysis A: General, 2014, 488, 189-199.	4.3	38
14	Potassium-copper perovskite catalysts for mild temperature diesel soot combustion. Applied Catalysis A: General, 2014, 485, 214-221.	4.3	47
15	Characterization and activity of alkaline earth metals loaded CeO2–MOx (MÂ=ÂMn, Fe) mixed oxides in catalytic reduction of NO. Materials Chemistry and Physics, 2014, 143, 921-928.	4.0	36
16	Role of the different copper species on the activity of Cu/zeolite catalysts for SCR of NOx with NH3. Applied Catalysis B: Environmental, 2014, 147, 420-428.	20.2	163
17	Low metal content Co and Ni alumina supported catalysts for the CO2 reforming of methane. International Journal of Hydrogen Energy, 2013, 38, 2230-2239.	7.1	84
18	Nitrous oxide decomposition in a real nitric acid plant gas stream with a <scp>RhOx</scp> /Ce ^{0.9} Pr _{0.1} O ₂ /alumina catalyst. Journal of Chemical Technology and Biotechnology, 2013, 88, 2233-2238.	3.2	7

Illãin-Gã³mez Mj

#	Article	IF	CITATIONS
19	Alumina-Supported Manganese Catalysts for Soot Combustion Prepared by Thermal Decomposition of KMnO4. Catalysts, 2012, 2, 352-367.	3.5	18
20	Influence of Pt addition to Ni catalysts on the catalytic performance for long term dry reforming of methane. Applied Catalysis A: General, 2012, 435-436, 10-18.	4.3	71
21	Preparation and characterisation of Î ³ -Al2O3 particles-supported Rh/Ce0.9Pr0.1O2 catalyst for N2O decomposition in the presence of O2, H2O and NOx. International Journal of Greenhouse Gas Control, 2012, 11, 251-261.	4.6	17
22	CoAl2O4 spinel catalyst for soot combustion with NO /O2. Catalysis Communications, 2011, 12, 1238-1241.	3.3	56
23	K and Sr promoted Co alumina supported catalysts for the CO2 reforming of methane. Catalysis Today, 2011, 176, 187-190.	4.4	47
24	Study of the uncatalyzed and catalyzed combustion of diesel and biodiesel soot. Catalysis Today, 2011, 176, 182-186.	4.4	23
25	NOx storage and reduction on a SrTiCuO3 perovskite catalyst studied by operando DRIFTS. Applied Catalysis B: Environmental, 2011, 104, 261-267.	20.2	58
26	Effect of potassium addition on catalytic activity of SrTiO3 catalyst for diesel soot combustion. Applied Catalysis B: Environmental, 2011, 101, 169-175.	20.2	90
27	Preparation, characterisation and N2O decomposition activity of honeycomb monolith-supported Rh/Ce0.9Pr0.1O2 catalysts. Applied Catalysis B: Environmental, 2011, 107, 18-25.	20.2	27
28	Soot combustion manganese catalysts prepared by thermal decomposition of KMnO4. Applied Catalysis B: Environmental, 2011, 102, 260-266.	20.2	53
29	Study by isotopic gases and in situ spectroscopies (DRIFTS, XPS and Raman) of the N2O decomposition mechanism on Rh/CeO2 and Rh/γ-Al2O3 catalysts. Journal of Catalysis, 2010, 276, 390-401.	6.2	67
30	On the importance of the catalyst redox properties in the N2O decomposition over alumina and ceria supported Rh, Pd and Pt. Applied Catalysis B: Environmental, 2010, 96, 370-378.	20.2	132
31	Enhanced Pt stability in MO2 (M=Ce, Zr or Ce0.9Zr0.1)-promoted Pt/C electrocatalysts for oxygen reduction reaction in PAFCs. Applied Catalysis A: General, 2010, 381, 54-65.	4.3	34
32	Promoting effect of CeO2 in the electrocatalytic activity of rhodium for ethanol electro-oxidation. Journal of Power Sources, 2009, 193, 408-415.	7.8	40
33	Rh–Sr/Al2O3 Catalyst for N2O Decomposition in the Presence of O2. Topics in Catalysis, 2009, 52, 1832-1836.	2.8	23
34	Potassium Stability in Soot Combustion Perovskite Catalysts. Topics in Catalysis, 2009, 52, 2097-2100.	2.8	30
35	Nickel catalyst activation in the carbon dioxide reforming of methane. Applied Catalysis A: General, 2009, 355, 27-32.	4.3	135
36	Power-bench demonstration of the Pt-catalysed C3H6-SCR of NOx in a diesel exhaust. Applied Catalysis A: General, 2009, 354, 63-71.	4.3	17

IllÃin-Gómez Mj

#	Article	IF	CITATIONS
37	Preparation, characterisation and catalytic performance for soot oxidation of copper-containing ZnAl2O4 spinels. Applied Catalysis A: General, 2009, 371, 92-98.	4.3	72
38	Role of surface and lattice copper species in copper-containing (Mg/Sr)TiO3 perovskite catalysts for soot combustion. Applied Catalysis B: Environmental, 2009, 93, 82-89.	20.2	88
39	Ni, Co and bimetallic Ni–Co catalysts for the dry reforming of methane. Applied Catalysis A: General, 2009, 371, 54-59.	4.3	379
40	Insight into hydroxides-activated coals: Chemical or physical activation?. Journal of Colloid and Interface Science, 2008, 318, 35-41.	9.4	38
41	NO adsorption on activated carbon fibers from iron-containing pitch. Microporous and Mesoporous Materials, 2008, 108, 294-302.	4.4	26
42	Cu/Al2O3 catalysts for soot oxidation: Copper loading effect. Applied Catalysis B: Environmental, 2008, 84, 651-658.	20.2	169
43	Modification of activated carbon porosity by pyrolysis under pressure of organic compounds. Adsorption, 2008, 14, 93-100.	3.0	6
44	Copper Catalysts for Soot Oxidation: Alumina versus Perovskite Supports. Environmental Science & Technology, 2008, 42, 7670-7675.	10.0	65
45	Advances in Potassium Catalyzed NOxReduction by Carbon Materials:Â An Overview. Industrial & Engineering Chemistry Research, 2007, 46, 3891-3903.	3.7	17
46	Noble-free potassium-bimetallic catalysts supported on beta-zeolite for the simultaneous removal of NOx and soot from simulated diesel exhaust. Catalysis Today, 2007, 119, 262-266.	4.4	18
47	The influence of iron chloride addition to the precursor pitch on the formation of activated carbon fibers. Microporous and Mesoporous Materials, 2007, 100, 202-209.	4.4	16
48	Potassium–copper and potassium–cobalt catalysts supported on alumina for simultaneous NOx and soot removal from simulated diesel engine exhaust. Applied Catalysis B: Environmental, 2007, 70, 261-268.	20.2	48
49	The selective reduction of NOx with propene on Pt-beta catalyst: A transient study. Applied Catalysis B: Environmental, 2007, 74, 313-323.	20.2	12
50	Catalytic removal of NOx and soot from diesel exhaust: Oxidation behaviour of carbon materials used as model soot. Applied Catalysis B: Environmental, 2007, 75, 11-16.	20.2	79
51	Performance of potassium-promoted catalysts for NO x and soot removal from simulated diesel exhaust. Topics in Catalysis, 2007, 42-43, 277-282.	2.8	6
52	Effect of NOx and C3H6 partial pressures on the activity of Pt-beta-coated cordierite monoliths for deNOx C3H6-SCR. Applied Catalysis A: General, 2006, 302, 244-249.	4.3	16
53	Effect of potassium content in the activity of K-promoted Ni/Al2O3 catalysts for the dry reforming of methane. Applied Catalysis A: General, 2006, 301, 9-15.	4.3	208
54	Preparation of beta-coated cordierite honeycomb monoliths by in situ synthesis. Applied Catalysis B: Environmental, 2005, 58, 1-7.	20.2	43

IllÃin-Gómez Mj

#	Article	IF	CITATIONS
55	Bimetallic catalysts for the simultaneous removal of NO and soot from diesel engine exhaust: A preliminary study using intrinsic catalysts. Catalysis Communications, 2005, 6, 263-267.	3.3	34
56	Catalytic activity and characterization of Ni/Al2O3 and NiK/Al2O3 catalysts for CO2 methane reforming. Applied Catalysis A: General, 2004, 264, 169-174.	4.3	116
57	On the structure sensitivity of deNOx HC-SCR over Pt-beta catalysts. Journal of Catalysis, 2003, 218, 111-122.	6.2	55
58	Activation by sintering of Pt-beta catalysts in deNO HC-SCR. Structure–activity relationships. Catalysis Communications, 2003, 4, 165-170.	3.3	18
59	NOx Reduction by Potassium-Containing Coal Briquettes. Effect of Preparation Procedure and Potassium Content. Energy & amp; Fuels, 2002, 16, 569-574.	5.1	25
60	Improvements in NO x reduction by carbon using bimetallic catalysts. Fuel, 2001, 80, 2001-2005.	6.4	22
61	Comparative study of Pt-based catalysts on different supports in the low-temperature de-NOx-SCR with propene. Applied Catalysis B: Environmental, 2001, 30, 399-408.	20.2	74
62	Comparison of hydrogen adsorption abilities of platinum-loaded carbon fibers prepared using two different methods. Carbon, 2000, 38, 778-780.	10.3	19
63	Low temperature selective catalytic reduction of NOx with C3H6 under lean-burn conditions on activated carbon-supported platinum. Applied Catalysis B: Environmental, 2000, 25, 39-48.	20.2	22
64	NOx reduction by carbon supporting potassium-bimetallic catalysts. Applied Catalysis B: Environmental, 2000, 25, 11-18.	20.2	34
65	Dual-bed catalytic system for NOx–N2O removal: a practical application for lean-burn deNOx HC-SCR. Applied Catalysis B: Environmental, 2000, 25, 191-203.	20.2	42
66	Reduction of NO by Propene Over Pt, Pd and Rh-Based ZSM-5 Under Lean-Burn Conditions. Reaction Kinetics and Catalysis Letters, 2000, 69, 385-392.	0.6	5
67	Effect of the Support in de-NOx HC-SCR Over Transition Metal Catalysts. Reaction Kinetics and Catalysis Letters, 2000, 70, 199-206.	0.6	7
68	Thermal treatment effect on NO reduction by potassium-containing coal-briquettes and coal-chars. Fuel Processing Technology, 1999, 61, 289-297.	7.2	15
69	Catalytic NOx reduction by carbon supporting metals. Applied Catalysis B: Environmental, 1999, 20, 267-275.	20.2	92
70	NOxReduction by Potassium-Containing Coal Briquettes. Effect of NO2Concentration. Energy & Fuels, 1999, 13, 499-505.	5.1	26
71	Potassium-Containing Coal Chars as Catalysts for NOx Reduction in the Presence of Oxygen. Energy & Fuels, 1998, 12, 1256-1264.	5.1	44
72	Potassium-containing briquetted coal for the reduction of NO. Fuel, 1997, 76, 499-505.	6.4	50

Illãin-Gã³mez Mj

#	Article	IF	CITATIONS
73	Activated Carbons from Spanish Coals. 2. Chemical Activation. Energy & amp; Fuels, 1996, 10, 1108-1114.	5.1	146
74	NO Reduction by Activated Carbons. 7. Some Mechanistic Aspects of Uncatalyzed and Catalyzed Reaction. Energy & Fuels, 1996, 10, 158-168.	5.1	177
75	On the difference between the isoelectric point and the point of zero charge of carbons. Carbon, 1995, 33, 1655-1657.	10.3	147
76	NO Reduction by Activated Carbons. 5. Catalytic Effect of Iron. Energy & amp; Fuels, 1995, 9, 540-548.	5.1	60
77	NO Reduction by Activated Carbons. 4. Catalysis by Calcium. Energy & amp; Fuels, 1995, 9, 112-118.	5.1	69
78	NO Reduction by Activated Carbons. 3. Influence of Catalyst Loading on the Catalytic Effect of Potassium. Energy & Fuels, 1995, 9, 104-111.	5.1	62
79	NO Reduction by Activated Carbon. 6. Catalysis by Transition Metals. Energy & Fuels, 1995, 9, 976-983.	5.1	103
80	NO Reduction by Activated Carbons. 2. Catalytic Effect of Potassium. Energy & amp; Fuels, 1995, 9, 97-103.	5.1	123
81	Nitrogen oxide (NO) reduction by activated carbons. 1. The role of carbon porosity and surface area. Energy & Fuels, 1993, 7, 146-154.	5.1	133
82	Activated carbons from Spanish coals. 1. Two-stage carbon dioxide activation. Energy & Fuels, 1992, 6, 9-15.	5.1	77
83	Induced Porosity in Activated Carbons by Catalytic Activation. Studies in Surface Science and Catalysis 1991 62 367-377	1.5	9