Huifu Xiao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4797642/publications.pdf Version: 2024-02-01

Ημιεί Χιλο

#	Article	IF	CITATIONS
1	Recent advances in integrated optical directed logic operations for high performance optical computing: a review. Frontiers of Optoelectronics, 2022, 15, 1.	1.9	10
2	Mode and Polarizationâ€Đivision Multiplexing Based on Silicon Nitride Loaded Lithium Niobate on Insulator Platform. Laser and Photonics Reviews, 2022, 16, .	4.4	42
3	Integrated Subwavelength Gratings on a Lithium Niobate on Insulator Platform for Mode and Polarization Manipulation. Laser and Photonics Reviews, 2022, 16, .	4.4	16
4	Monolithic Photonic Integrated Circuit Based on Silicon Nitride and Lithium Niobate on Insulator Hybrid Platform. Advanced Photonics Research, 2022, 3, .	1.7	8
5	Integrated non-blocking optical router harnessing wavelength- and mode-selective property for photonic networks-on-chip. Optics Express, 2021, 29, 1251.	1.7	4
6	Demonstration of various optical directed logic operations by using an integrated photonic circuit. Optics Letters, 2021, 46, 2457.	1.7	4
7	Single-step etched grating couplers for silicon nitride loaded lithium niobate on insulator platform. APL Photonics, 2021, 6, 086108.	3.0	24
8	On-Chip Non-Blocking Optical Mode Exchanger for Mode-Division Multiplexing Interconnection Networks. Journal of Lightwave Technology, 2021, 39, 6563-6571.	2.7	4
9	High-speed electro-optic modulator based on silicon nitride loaded lithium niobate on an insulator platform. Optics Letters, 2021, 46, 5986.	1.7	33
10	On-chip switchable and reconfigurable optical mode exchange device using cascaded three-waveguide-coupling switches. Optics Express, 2020, 28, 9552.	1.7	13
11	On-chip biochemical sensor using wide Gaussian beams in silicon waveguide-integrated plasmonic crystal. Optics Letters, 2020, 45, 2283.	1.7	6
12	On-chip scalable mode-selective converter based on asymmetrical micro-racetrack resonators. Nanophotonics, 2020, 9, 1447-1455.	2.9	3
13	PDMS-Assisted Microfiber M-Z Interferometer With a Knot Resonator for Temperature Sensing. IEEE Photonics Technology Letters, 2019, 31, 337-340.	1.3	26
14	On-chip Reconfigurable Mode Converter Compatible with WDM Using Parallel Micro-ring Resonators. , 2019, , .		0
15	Reconfigurable On-Chip Mode Exchange for Mode-Division Multiplexing Optical Networks. Journal of Lightwave Technology, 2019, 37, 1008-1013.	2.7	22
16	Independently tunable double Fano resonances based on waveguide-coupled cavities. Optics Letters, 2019, 44, 3154.	1.7	15
17	Ultra-compact dual-polarization silicon mode-order converter. Optics Letters, 2019, 44, 4179.	1.7	33
18	Reconfigurable two-mode multiplexer based on three-waveguide-coupling structure. , 2019, , .		0

2

Ηυιγυ Χιλο

#	Article	IF	CITATIONS
19	Reconfigurable data exchange for wavelength- and mode-division multiplexing optical networks. , 2019, , .		0
20	Demonstration of a Microfiber-Based Add–Drop Filter Using One Tapered Fiber. IEEE Photonics Journal, 2018, 10, 1-6.	1.0	2
21	Experimental demonstration of an optical Feynman gate for reversible logic operation using silicon micro-ring resonators. Nanophotonics, 2018, 7, 333-337.	2.9	35
22	On-chip optical parity checker using silicon photonic integrated circuits. Nanophotonics, 2018, 7, 1939-1948.	2.9	11
23	Experimental realization of a CMOS-compatible optical directed priority encoder using cascaded micro-ring resonators. Nanophotonics, 2018, 7, 727-733.	2.9	8
24	Experimental realization of an optical digital comparator using silicon microring resonators. Nanophotonics, 2018, 7, 669-675.	2.9	10
25	Graphene-assisted all-optical tunable Mach–Zehnder interferometer based on microfiber. Optics Communications, 2018, 428, 77-83.	1.0	12
26	Demonstration of an optical directed half-subtracter using integrated silicon photonic circuits. Applied Optics, 2018, 57, 2564.	0.9	6
27	On-chip reconfigurable and scalable optical mode multiplexer/demultiplexer based on three-waveguide-coupling structure. Optics Express, 2018, 26, 22366.	1.7	29
28	Experimental realization of mode-splitting resonance using microring resonator with a feedback coupled waveguide. Applied Physics Express, 2018, 11, 092201.	1.1	3
29	Optical mode switch based on multimode interference couplers. Journal of Optics (United Kingdom), 2017, 19, 025802.	1.0	16
30	Tunable Fano resonance in mutually coupled micro-ring resonators. Applied Physics Letters, 2017, 111, .	1.5	11
31	Experimental demonstration of a reconfigurable electro-optic directed logic circuit using cascaded carrier-injection micro-ring resonators. Scientific Reports, 2017, 7, 6410.	1.6	18
32	All-optical tunable microfiber knot resonator with graphene-assisted sandwich structure. Optics Express, 2017, 25, 18451.	1.7	25
33	Tunable Fano resonances based on microring resonator with feedback coupled waveguide. Optics Express, 2016, 24, 20187.	1.7	58
34	Simulation and Demonstration of Directed XOR/XNOR Logic Gates Using Two Cascaded Microring Resonators. IEEE Photonics Journal, 2016, 8, 1-11.	1.0	7
35	Reconfigurable Electro-optic Logic Circuits Using Microring Resonator-Based Optical Switch Array. IEEE Photonics Journal, 2016, 8, 1-8.	1.0	14
36	Electro-optic directed XOR logic circuits based on parallel-cascaded micro-ring resonators. Optics Express, 2015, 23, 26342.	1.7	12

#	Article	IF	CITATIONS
37	Arbitrary access to optical carriers in silicon photonic mode/wavelength hybrid division multiplexing circuits. Optics Letters, 0, , .	1.7	2