Andras Perl

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4797481/publications.pdf Version: 2024-02-01

ANDDAS DEDI

#	Article	IF	CITATIONS
1	Redox Control of Integrin-Mediated Hepatic Inflammation in Systemic Autoimmunity. Antioxidants and Redox Signaling, 2022, 36, 367-388.	5.4	4
2	Adenosine receptor 2a agonists target mouse CD11c+T-bet+ B cells in infection and autoimmunity. Nature Communications, 2022, 13, 452.	12.8	15
3	Renal mTORC1 activation is associated with disease activity and prognosis in lupus nephritis. Rheumatology, 2022, 61, 3830-3840.	1.9	20
4	Recurrent brachial plexopathy as initial presentation of systemic lupus erythematosus: A case report and review of the literature. Lupus, 2022, 31, 500-504.	1.6	0
5	Cell type-specific mechanistic target of rapamycin-dependent distortion of autophagy pathways in lupus nephritis. Translational Research, 2022, 245, 55-81.	5.0	14
6	Appraising SARS-CoV-2 infections after full mRNA COVID-19 vaccination in patients with systemic lupus erythematosus (SLE). Clinical Immunology Communications, 2022, 2, 54-56.	1.2	2
7	Microbiota-mediated skewing of tryptophan catabolism modulates CD4+ TÂcells in lupus-prone mice. IScience, 2022, 25, 104241.	4.1	18
8	Metabolic control of lupus pathogenesis: central role for activation of the mechanistic target of rapamycin. , 2021, , 267-276.		0
9	Metabolic and mitochondrial dysfunction in SLE. , 2021, , 109-116.		2
10	Double-Edged Sword: Interleukin-2 Promotes T Regulatory Cell Differentiation but Also Expands Interleukin-13- and Interferon-Î ³ -Producing CD8+ T Cells via STAT6-GATA-3 Axis in Systemic Lupus Erythematosus. Frontiers in Immunology, 2021, 12, 635531.	4.8	8
11	Improvement of renal and non-renal SLE outcome measures on sirolimus therapy – A 21-year follow-up study of 73 patients. Clinical Immunology, 2021, 229, 108781.	3.2	15
12	Pfizer–biontech COVID-19 RNA vaccination induces phosphatidylserine autoantibodies, cryoglobulinemia, and digital necrosis in a patient with pre-existing autoimmunity. Clinical Immunology Communications, 2021, 1, 1-3.	1.2	8
13	Therapeutic mTOR blockade in systemic autoimmunity: Implications for antiviral immunity and extension of lifespan. Autoimmunity Reviews, 2021, 20, 102984.	5.8	16
14	Transaldolase haploinsufficiency in subjects with acetaminophenâ€induced liver failure. Journal of Inherited Metabolic Disease, 2020, 43, 496-506.	3.6	11
15	Metabolic pathways mediate pathogenesis and offer targets for treatment in rheumatic diseases. Current Opinion in Rheumatology, 2020, 32, 184-191.	4.3	26
16	Therapeutic blockade of inflammation in severe COVID-19 infection with intravenous N-acetylcysteine. Clinical Immunology, 2020, 219, 108544.	3.2	111
17	Successful treatment of secondary macrophage activation syndrome with emapalumab in a patient with newly diagnosed adult-onset Still's disease: case report and review of the literature. Annals of Translational Medicine, 2020, 8, 887-887.	1.7	32
18	The Use of Eculizumab in Tacrolimus-Induced Thrombotic Microangiopathy. Journal of Investigative Medicine High Impact Case Reports, 2020, 8, 232470962094726.	0.6	5

#	Article	IF	CITATIONS
19	Hydroxychloroquine-Induced Toxic Myopathy Causing Diaphragmatic Weakness and Lung Collapse Requiring Prolonged Mechanical Ventilation. Journal of Investigative Medicine High Impact Case Reports, 2020, 8, 232470962095011.	0.6	2
20	Management of cardiovascular disease in patients with systemic lupus erythematosus. Expert Opinion on Pharmacotherapy, 2020, 21, 1617-1627.	1.8	16
21	Trauma Induced Calcium Pyrophosphate Deposition Disease of the Lumbar Spine. Case Reports in Rheumatology, 2020, 2020, 1-5.	0.6	5
22	Nine-test panel has superior sensitivity to detect antiphospholipid antibody syndrome in patients with or without SLE. Clinical Immunology, 2020, 214, 108388.	3.2	2
23	Targeting mitochondrial oxidative stress with MitoQ reduces NET formation and kidney disease in lupus-prone MRL- <i>lpr</i> mice. Lupus Science and Medicine, 2020, 7, e000387.	2.7	54
24	Lupus-associated endogenous retroviral LTR polymorphism and epigenetic imprinting promote HRES-1/RAB4 expression and mTOR activation. JCI Insight, 2020, 5, .	5.0	12
25	Metabolic Targets for Treatment of Autoimmune Diseases. Immunometabolism, 2020, 2, .	1.6	34
26	Pathogenesis and treatment of autoimmune rheumatic diseases. Current Opinion in Rheumatology, 2019, 31, 307-315.	4.3	31
27	Metabolism as a Target for Modulation in Autoimmune Diseases. Trends in Immunology, 2018, 39, 562-576.	6.8	105
28	Sirolimus in patients with clinically active systemic lupus erythematosus resistant to, or intolerant of, conventional medications: a single-arm, open-label, phase 1/2 trial. Lancet, The, 2018, 391, 1186-1196.	13.7	290
29	Blockade of Treg Cell Differentiation and Function by the Interleukinâ€21–Mechanistic Target of Rapamycin Axis Via Suppression of Autophagy in Patients With Systemic Lupus Erythematosus. Arthritis and Rheumatology, 2018, 70, 427-438.	5.6	125
30	BD-02â€Blockade of the mechanistic target of rapamycin elicits rapid and lasting improvement of disease activity through restraining pro-inflammatory T cell lineage specification in patients with active SLE. , 2018, , .		0
31	mTOR-dependent autophagy contributes to end-organ resistance and serves as target for treatment in autoimmune disease. EBioMedicine, 2018, 36, 12-13.	6.1	9
32	Sirolimus for systemic lupus erythematosus – Authors' reply. Lancet, The, 2018, 392, 734.	13.7	0
33	Systemic lupus erythematosus-myasthenia gravis overlap syndrome: Presentation and treatment depend on prior thymectomy. Clinical Immunology, 2018, 194, 100-104.	3.2	13
34	Review: Metabolic Control of Immune System Activation in Rheumatic Diseases. Arthritis and Rheumatology, 2017, 69, 2259-2270.	5.6	91
35	Measurement of Mitochondrial Mass by Flow Cytometry during Oxidative Stress. , 2017, 4, 275-283.		44

#	Article	IF	CITATIONS
37	Roles of Mechanistic Target of Rapamycin in the Adaptive and Innate Immune Systems. , 2016, , 277-292.		Ο
38	Editorial: LINEing Up to Boost Interferon Production: Activation of Endogenous Retroviral DNA in Autoimmunity. Arthritis and Rheumatology, 2016, 68, 2568-2570.	5.6	2
39	Mitochondrial Dysfunction in the Liver and Antiphospholipid Antibody Production Precede Disease Onset and Respond to Rapamycin in Lupusâ€Prone Mice. Arthritis and Rheumatology, 2016, 68, 2728-2739.	5.6	93
40	Reactive oxygen species induce virus-independent MAVS oligomerization in systemic lupus erythematosus. Science Signaling, 2016, 9, ra115.	3.6	127
41	Activation of the Mechanistic Target of Rapamycin in SLE: Explosion of Evidence in the Last Five Years. Current Rheumatology Reports, 2016, 18, 73.	4.7	62
42	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	9.1	4,701
43	Activation of mTOR (mechanistic target of rapamycin) in rheumatic diseases. Nature Reviews Rheumatology, 2016, 12, 169-182.	8.0	256
44	Oxidative Stress and ADHD. Journal of Attention Disorders, 2015, 19, 915-924.	2.6	145
45	Comprehensive metabolome analyses reveal N-acetylcysteine-responsive accumulation of kynurenine in systemic lupus erythematosus: implications for activation of the mechanistic target of rapamycin. Metabolomics, 2015, 11, 1157-1174.	3.0	123
46	Liver injury correlates with biomarkers of autoimmunity and disease activity and represents an organ system involvement in patients with systemic lupus erythematosus. Clinical Immunology, 2015, 160, 319-327.	3.2	36
47	mTOR activation is a biomarker and a central pathway to autoimmune disorders, cancer, obesity, and aging. Annals of the New York Academy of Sciences, 2015, 1346, 33-44.	3.8	175
48	Oxidative stress and Treg depletion in lupus patients with anti-phospholipid syndrome. Clinical Immunology, 2015, 158, 148-152.	3.2	27
49	HRES-1/Rab4-mediated depletion of Drp1 impairs mitochondrial homeostasis and represents a target for treatment in SLE. Annals of the Rheumatic Diseases, 2014, 73, 1888-1897.	0.9	131
50	Metabolic control of the epigenome in systemic Lupus erythematosus. Autoimmunity, 2014, 47, 256-264.	2.6	60
51	Mechanistic Target of Rapamycin Complex 1 Expands Th17 and IL-4+ CD4â^'CD8â^' Double-Negative T Cells and Contracts Regulatory T Cells in Systemic Lupus Erythematosus. Journal of Immunology, 2014, 192, 4134-4144.	0.8	141
52	Interplay of Infections, Autoimmunity, and Immunosuppression in Systemic Lupus Erythematosus. International Reviews of Immunology, 2014, 33, 330-363.	3.3	49
53	Increased Mitochondrial Electron Transport Chain Activity at Complex I Is Regulated by <i>N</i> -Acetylcysteine in Lymphocytes of Patients with Systemic Lupus Erythematosus. Antioxidants and Redox Signaling, 2014, 21, 56-65.	5.4	80
54	DNA methylation modulates HRES1/p28 expression in B cells from patients with Lupus. Autoimmunity, 2014, 47, 265-271.	2.6	80

#	Article	IF	CITATIONS
55	HRES-1/Rab4 Promotes the Formation of LC3+ Autophagosomes and the Accumulation of Mitochondria during Autophagy. PLoS ONE, 2014, 9, e84392.	2.5	43
56	Oxidative stress in the pathology and treatment of systemic lupus erythematosus. Nature Reviews Rheumatology, 2013, 9, 674-686.	8.0	270
57	Brief Report: Attention Deficit and Hyperactivity Disorder Scores Are Elevated and Respond to <i>N</i> â€Acetylcysteine Treatment in Patients With Systemic Lupus Erythematosus. Arthritis and Rheumatism, 2013, 65, 1313-1318.	6.7	85
58	Tuberous Sclerosis and Fulminant Lupus in a Young Woman. Journal of Clinical Rheumatology, 2013, 19, 134-137.	0.9	30
59	Mechanistic Target of Rapamycin Activation Triggers IL-4 Production and Necrotic Death of Double-Negative T Cells in Patients with Systemic Lupus Erythematosus. Journal of Immunology, 2013, 191, 2236-2246.	0.8	123
60	Endothelial Nitric Oxide Synthase Reduces Crescentic and Necrotic Glomerular Lesions, Reactive Oxygen Production, and MCP1 Production in Murine Lupus Nephritis. PLoS ONE, 2013, 8, e64650.	2.5	33
61	Murine Lupus Susceptibility Locus <i>Sle1c2</i> Mediates CD4+ T Cell Activation and Maps to Estrogen-Related Receptor γ. Journal of Immunology, 2012, 189, 793-803.	0.8	55
62	T lymphocytes from patients with systemic lupus erythematosus are resistant to induction of autophagy. FASEB Journal, 2012, 26, 4722-4732.	0.5	138
63	Metabolic regulation of organelle homeostasis in lupus T cells. Clinical Immunology, 2012, 144, 200-213.	3.2	48
64	<i>N</i> â€acetylcysteine reduces disease activity by blocking mammalian target of rapamycin in T cells from systemic lupus erythematosus patients: A randomized, doubleâ€blind, placeboâ€controlled trial. Arthritis and Rheumatism, 2012, 64, 2937-2946.	6.7	331
65	Assessment of Mitochondrial Dysfunction in Lymphocytes of Patients with Systemic Lupus Erythematosus. Methods in Molecular Biology, 2012, 900, 61-89.	0.9	64
66	Oxidative stress and endosome recycling are complementary mechanisms reorganizing the T-cell receptor signaling complex in SLE. Clinical Immunology, 2012, 142, 219-222.	3.2	6
67	Pathogenesis and Spectrum of Autoimmunity. Methods in Molecular Biology, 2012, 900, 1-9.	0.9	17
68	The Role of Endocytic Recycling in Autoimmunity. Methods in Molecular Biology, 2012, 900, 91-107.	0.9	5
69	Psychiatric Symptoms in Systemic Lupus Erythematosus. Journal of Clinical Psychiatry, 2012, 73, 993-1001.	2.2	126
70	Oxidative stress, inflammation and carcinogenesis are controlled through the pentose phosphate pathway by transaldolase. Trends in Molecular Medicine, 2011, 17, 395-403.	6.7	143
71	Mechanisms and Consequences of Mitochondrial Dysfunction and Oxidative Stress in T-Cells of Patients with SLE. , 2011, , 177-189.		0
72	Dr. Perl replies. Journal of Rheumatology, 2011, 38, 1217-1217.	2.0	1

#	Article	IF	CITATIONS
73	Adhesion-dependent Skp2 transcription requires selenocysteine tRNA gene transcription-activating factor (STAF). Biochemical Journal, 2011, 436, 133-143.	3.7	18
74	Dual effect of the macrophage migration inhibitory factor gene on the development and severity of human systemic lupus erythematosus. Arthritis and Rheumatism, 2011, 63, 3942-3951.	6.7	106
75	Endogenous retroviral pathogenesis in lupus. Current Opinion in Rheumatology, 2010, 22, 483-492.	4.3	61
76	Detection of lupus anticoagulant and successful anticoagulation in familial Sneddon syndrome. Annals of the Rheumatic Diseases, 2010, 69, 775-776.	0.9	6
77	Induction of Systemic Lupus Erythematosus with Tumor Necrosis Factor Blockers. Journal of Rheumatology, 2010, 37, 204-205.	2.0	43
78	Cleavage of Transaldolase by Granzyme B Causes the Loss of Enzymatic Activity with Retention of Antigenicity for Multiple Sclerosis Patients. Journal of Immunology, 2010, 184, 4025-4032.	0.8	21
79	Infection in systemic lupus erythematosus: friend or foe?. International Journal of Clinical Rheumatology, 2010, 5, 59-74.	0.3	58
80	Mitochondrial involvement and erythronic acid as a novel biomarker in transaldolase deficiency. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2010, 1802, 1028-1035.	3.8	43
81	Pathogenic mechanisms in systemic lupus erythematosus. Autoimmunity, 2010, 43, 1-6.	2.6	86
82	Central role of nitric oxide in the pathogenesis of rheumatoid arthritis and sysemic lupus erythematosus. Arthritis Research and Therapy, 2010, 12, 210.	3.5	132
83	Systems biology of lupus: Mapping the impact of genomic and environmental factors on gene expression signatures, cellular signaling, metabolic pathways, hormonal and cytokine imbalance, and selecting targets for treatment. Autoimmunity, 2010, 43, 32-47.	2.6	53
84	mTOR signaling: a central pathway to pathogenesis in systemic lupus erythematosus?. Discovery Medicine, 2010, 9, 173-8.	0.5	85
85	Pharmacotherapy of systemic lupus erythematosus. Expert Opinion on Pharmacotherapy, 2009, 10, 1481-1494.	1.8	29
86	Activation of Mammalian Target of Rapamycin Controls the Loss of TCRζ in Lupus T Cells through HRES-1/Rab4-Regulated Lysosomal Degradation. Journal of Immunology, 2009, 182, 2063-2073.	0.8	221
87	Emerging new pathways of pathogenesis and targets for treatment in systemic lupus erythematosus and Sjogren's syndrome. Current Opinion in Rheumatology, 2009, 21, 443-447.	4.3	46
88	Overview of signal processing by the immune system in systemic lupus erythematosus. Autoimmunity Reviews, 2009, 8, 177-178.	5.8	1
89	Metabolic control of T cell activation and death in SLE. Autoimmunity Reviews, 2009, 8, 184-189.	5.8	97
90	Identification of mitochondrial genome concatemers in AIDS-associated lymphomas and lymphoid cell lines. Leukemia Research, 2009, 33, 1499-1504.	0.8	6

#	Article	IF	CITATIONS
91	T-cell and B-cell signaling biomarkers and treatment targets in lupus. Current Opinion in Rheumatology, 2009, 21, 454-464.	4.3	40
92	Lymphoedema: a paradoxical effect of tumour necrosis factor inhibitors - case report and review of literature. BMJ Case Reports, 2009, 2009, bcr0720080520-bcr0720080520.	0.5	4
93	Prevention of hepatocarcinogenesis and increased susceptibility to acetaminophen-induced liver failure in transaldolase-deficient mice by N-acetylcysteine. Journal of Clinical Investigation, 2009, 119, 1546-1557.	8.2	80
94	Haplotypes of the HRESâ€l endogenous retrovirus are associated with development and disease manifestations of systemic lupus erythematosus. Arthritis and Rheumatism, 2008, 58, 532-540.	6.7	48
95	Association of common mitochondrial DNA variants with multiple sclerosis and systemic lupus erythematosus. Clinical Immunology, 2008, 129, 31-35.	3.2	76
96	CCL genes in multiple sclerosis and systemic lupus erythematosus. Journal of Neuroimmunology, 2008, 200, 145-152.	2.3	21
97	Molecular mimicry and immunomodulation by the HRES-1 endogenous retrovirus in SLE. Autoimmunity, 2008, 41, 287-297.	2.6	46
98	Transaldolase deficiency influences the pentose phosphate pathway, mitochondrial homoeostasis and apoptosis signal processing. Biochemical Journal, 2008, 415, 123-134.	3.7	46
99	Increased activity of the mTOR pathway contributes to deficiencies of CD3ζ and Lck in T cells isolated from patients with systemic lupus erythematosus. FASEB Journal, 2008, 22, 1074.20.	0.5	0
100	The combination of nuclear and mitochondrial mutations as a risk factor for idiosyncratic toxicity. British Journal of Clinical Pharmacology, 2007, 63, 249-251.	2.4	5
101	Immunofluorescence microscopy is superior to fluorescent beads for detection of antinuclear antibody reactivity in systemic lupus erythematosus patients. Clinical Immunology, 2007, 124, 18-21.	3.2	37
102	Nitric oxide, mitochondrial hyperpolarization, and T cell activationâ~†. Free Radical Biology and Medicine, 2007, 42, 1625-1631.	2.9	60
103	The pathogenesis of transaldolase deficiency. IUBMB Life, 2007, 59, 365-373.	3.4	35
104	Fatal toxic myopathy attributed to propofol, methylprednisolone, and cyclosporine after prior exposure to colchicine and simvastatin. Clinical Rheumatology, 2007, 27, 129-131.	2.2	41
105	Mitochondrial Dysfunction and Oxidative Stress in T Cells of Patients with Systemic Lupus Erythematosus. , 2007, , 293-300.		0
106	The role of nitric oxide in abnormal T cell signal transduction in systemic lupus erythematosus. Clinical Immunology, 2006, 118, 145-151.	3.2	15
107	Possible pathogenic nature of the recently discovered TT virus: Does it play a role in autoimmune rheumatic diseases?. Autoimmunity Reviews, 2006, 6, 5-9.	5.8	68
108	Rapamycin reduces disease activity and normalizes T cell activation–induced calcium fluxing in patients with systemic lupus erythematosus. Arthritis and Rheumatism, 2006, 54, 2983-2988.	6.7	289

#	Article	IF	CITATIONS
109	Study of transaldolase deficiency in urine samples by capillary LC-MS/MS. Journal of Mass Spectrometry, 2006, 41, 463-469.	1.6	20
110	Signaling Abnormalities in Systemic Lupus Erythematosus as Potential Drug Targets. Endocrine, Metabolic and Immune Disorders - Drug Targets, 2006, 6, 305-311.	1.2	20
111	Transaldolase is essential for maintenance of the mitochondrial transmembrane potential and fertility of spermatozoa. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 14813-14818.	7.1	70
112	Regulation of CD4 Expression via Recycling by HRES-1/RAB4 Controls Susceptibility to HIV Infection. Journal of Biological Chemistry, 2006, 281, 34574-34591.	3.4	58
113	Computational methods for functional site identification suggest a substrate access channel in transaldolase. Genome Informatics, 2006, 17, 13-22.	0.4	3
114	CD8+T Cell-Mediated HLA-A*0201-Restricted Cytotoxicity to Transaldolase Peptide 168–176 in Patients with Multiple Sclerosis. Journal of Immunology, 2005, 175, 8365-8378.	0.8	32
115	Mitochondrial Signal Transduction Abnormalities in Systemic Lupus Erythematosus. Current Immunology Reviews, 2005, 1, 61-67.	1.2	11
116	Increased prevalence of transfusion-transmitted virus and cross-reactivity with immunodominant epitopes of the HRES-1/p28 endogenous retroviral autoantigen in patients with systemic lupus erythematosus. Clinical Immunology, 2005, 116, 124-134.	3.2	51
117	T- and B-Cell Abnormalities in Systemic Lupus Erythematosus. Critical Reviews in Immunology, 2005, 25, 123-140.	0.5	106
118	Apoptosis and Mitochondrial Dysfunction in Lymphocytes of Patients With Systemic Lupus Erythematosus. , 2004, 102, 087-114.		30
119	ZNF143 Mediates Basal and Tissue-specific Expression of Human Transaldolase. Journal of Biological Chemistry, 2004, 279, 12190-12205.	3.4	36
120	Pathogenesis and Spectrum of Autoimmunity. , 2004, 102, 001-008.		21
121	Nitric Oxide-Dependent Mitochondrial Biogenesis Generates Ca2+ Signaling Profile of Lupus T Cells. Journal of Immunology, 2004, 173, 3676-3683.	0.8	112
122	MITOCHONDRIAL DYSFUNCTION IN T CELLS OF PATIENTS WITH SYSTEMIC LUPUS ERYTHEMATOSUS. International Reviews of Immunology, 2004, 23, 293-313.	3.3	64
123	Mitochondrial hyperpolarization: a checkpoint of T-cell life, death and autoimmunity. Trends in Immunology, 2004, 25, 360-367.	6.8	234
124	Deletion of Ser-171 causes inactivation, proteasome-mediated degradation and complete deficiency of human transaldolase. Biochemical Journal, 2004, 382, 725-731.	3.7	13
125	Role of endogenous retroviruses in autoimmune diseases. Rheumatic Disease Clinics of North America, 2003, 29, 123-143.	1.9	47
126	T Cell Activation-Induced Mitochondrial Hyperpolarization Is Mediated by Ca2+- and Redox-Dependent Production of Nitric Oxide. Journal of Immunology, 2003, 171, 5188-5197.	0.8	148

#	Article	IF	CITATIONS
127	Differential Regulation of Hydrogen Peroxide and Fas-Dependent Apoptosis Pathways by Dehydroascorbate, the Oxidized Form of Vitamin C. Antioxidants and Redox Signaling, 2002, 4, 357-369.	5.4	15
128	Persistent Mitochondrial Hyperpolarization, Increased Reactive Oxygen Intermediate Production, and Cytoplasmic Alkalinization Characterize Altered IL-10 Signaling in Patients with Systemic Lupus Erythematosus. Journal of Immunology, 2002, 169, 1092-1101.	0.8	177
129	Metabolic Switches of T-Cell Activation and Apoptosis. Antioxidants and Redox Signaling, 2002, 4, 427-443.	5.4	67
130	Mitochondrial hyperpolarization and ATP depletion in patients with systemic lupus erythematosus. Arthritis and Rheumatism, 2002, 46, 175-190.	6.7	340
131	Abnormal T cell signal transduction in systemic lupus erythematosus. Arthritis and Rheumatism, 2002, 46, 1139-1154.	6.7	141
132	Relationship between posttranslational modification of transaldolase and catalase deficiency in UV-sensitive repair-deficient xeroderma pigmentosum fibroblasts and SV40-transformed human cells. Free Radical Biology and Medicine, 2001, 30, 1365-1373.	2.9	28
133	Stimulation of the pentose phosphate pathway and glutathione levels by dehydroascorbate, the oxidized form of vitamin C. FASEB Journal, 2000, 14, 1352-1361.	0.5	102
134	Human Transaldolase-associated Repetitive Elements Are Transcribed by RNA Polymerase III. Journal of Biological Chemistry, 2000, 275, 7261-7272.	3.4	11
135	Genetic and Metabolic Control of the Mitochondrial Transmembrane Potential and Reactive Oxygen Intermediate Production in HIV Disease. Antioxidants and Redox Signaling, 2000, 2, 551-573.	5.4	75
136	The three-dimensional structure of human transaldolase. FEBS Letters, 2000, 475, 205-208.	2.8	38
137	Molecular Mimicry, Altered Apoptosis, and Immunomodulation as Mechanisms of Viral Pathogenesis in Systemic Lupus Erythematosus. , 1999, , 43-64.		12
138	Molecular Ordering in HIV-induced Apoptosis. Journal of Biological Chemistry, 1998, 273, 11944-11953.	3.4	104
139	The Human Transaldolase Gene (TALDO1) Is Located on Chromosome 11 at p15.4–p15.5. Genomics, 1997, 45, 233-238.	2.9	18
140	Inhibition of the catalytic activity of human transaldolase by antibodies and site-directed mutagenesis. FEBS Letters, 1996, 378, 161-165.	2.8	26
141	Glutathione Levels and Sensitivity to Apoptosis Are Regulated by Changes in Transaldolase Expression. Journal of Biological Chemistry, 1996, 271, 32994-33001.	3.4	174
142	Antibody reactivity to the hresâ€1 endogenous retroviral element identifies a subset of patients with systemic lupus erythematosus and overlap syndromes. Arthritis and Rheumatism, 1995, 38, 1660-1671.	6.7	95
143	Effect of p40taxtrans-Activator of Human T Cell Lymphotropic Virus Type I on Expression of Autoantigens. AIDS Research and Human Retroviruses, 1994, 10, 303-308.	1.1	8
144	Human endogenous retroviral elements and autoimmunity: data and concepts. Trends in Microbiology, 1993, 1, 153-156.	7.7	41

#	ARTICLE	IF	CITATIONS
145	PCR amplification of highly GC-rich DNA template after denaturation by NaOH. Nucleic Acids Research, 1993, 21, 5283-5284.	14.5	31
146	Heterogeneous Expression and Coordinate Regulation of Endogenous Retroviral Sequences in Human Peripheral Blood Mononuclear Cells. AIDS Research and Human Retroviruses, 1992, 8, 1991-1998.	1.1	44
147	Endogenous retroviruses: potential etiologic agents in autoimmunity. FASEB Journal, 1992, 6, 2537-2544.	0.5	142
148	The human T-cell leukemia virus-related endogenous sequence (HRES1) is located on chromosome 1 at q42. Genomics, 1991, 11, 1172-1173.	2.9	31
149	Antibodies to Retroviral Proteins and Reverse Transcriptase Activity in Patients With Essential Cryoglobulinemia. Arthritis and Rheumatism, 1991, 34, 1313-1318.	6.7	15
150	Rearrangement of the T-cell receptor alpha, beta and gamma chain genes in chronic lymphocytic leukemia. Leukemia Research, 1990, 14, 131-137.	0.8	12
151	Detection and cloning of new HTLV-related endogenous sequences in man. Nucleic Acids Research, 1989, 17, 6841-6854.	14.5	116
152	Indomethacin abrogates the suppression by cyclosporin A of lectin-dependent cell-mediated cytotoxicity to HEp-2 cells. Immunopharmacology, 1986, 11, 39-45.	2.0	4
153	Ketoconazole in vitro inhibits mitogen-induced blastogenesis, antibody-dependent cellular cytotoxicity, natural killer activity and random migration of human leukocytes. Immunopharmacology, 1984, 7, 167-170.	2.0	22
154	Effector activity of OKT4+ and OKT8+ T-cell subsets in lectin-dependent cell-mediated cytotoxicity against adherent HEp-2 cells. Cellular Immunology, 1984, 84, 185-193.	3.0	29
155	Effect of Fc receptor blocking on human natural and lectin-dependent cell-mediated cytotoxicity against adherent HEp-2 cells. Immunology Letters, 1983, 6, 317-321.	2.5	1