Peter F F Stadler

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4797177/publications.pdf

Version: 2024-02-01

679 papers

57,529 citations

93 h-index 215 g-index

732 all docs 732 docs citations

times ranked

732

57002 citing authors

#	Article	IF	CITATIONS
1	Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project. Nature, 2007, 447, 799-816.	13.7	4,709
2	MITOS: Improved de novo metazoan mitochondrial genome annotation. Molecular Phylogenetics and Evolution, 2013, 69, 313-319.	1.2	3,919
3	ViennaRNA Package 2.0. Algorithms for Molecular Biology, 2011, 6, 26.	0.3	3,719
4	RNA Maps Reveal New RNA Classes and a Possible Function for Pervasive Transcription. Science, 2007, 316, 1484-1488.	6.0	2,250
5	Pan-cancer analysis of whole genomes. Nature, 2020, 578, 82-93.	13.7	1,966
6	Fast folding and comparison of RNA secondary structures. Monatshefte Fýr Chemie, 1994, 125, 167-188.	0.9	1,862
7	Analyses of pig genomes provide insight into porcine demography and evolution. Nature, 2012, 491, 393-398.	13.7	1,190
8	The primary transcriptome of the major human pathogen Helicobacter pylori. Nature, 2010, 464, 250-255.	13.7	1,115
9	Proteinortho: Detection of (Co-)orthologs in large-scale analysis. BMC Bioinformatics, 2011, 12, 124.	1.2	1,091
10	Comparative genomics reveals insights into avian genome evolution and adaptation. Science, 2014, 346, 1311-1320.	6.0	895
11	tRNAdb 2009: compilation of tRNA sequences and tRNA genes. Nucleic Acids Research, 2009, 37, D159-D162.	6.5	751
12	The African coelacanth genome provides insights into tetrapod evolution. Nature, 2013, 496, 311-316.	13.7	612
13	From The Cover: Fast and reliable prediction of noncoding RNAs. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 2454-2459.	3.3	599
14	Interleukin-6–dependent survival of multiple myeloma cells involves the Stat3-mediated induction of microRNA-21 through a highly conserved enhancer. Blood, 2007, 110, 1330-1333.	0.6	597
15	The genome of the recently domesticated crop plant sugar beet (Beta vulgaris). Nature, 2014, 505, 546-549.	13.7	569
16	Molecular Evolution of a MicroRNA Cluster. Journal of Molecular Biology, 2004, 339, 327-335.	2.0	554
17	Secondary Structure Prediction for Aligned RNA Sequences. Journal of Molecular Biology, 2002, 319, 1059-1066.	2.0	545
18	The spotted gar genome illuminates vertebrate evolution and facilitates human-teleost comparisons. Nature Genetics, 2016, 48, 427-437.	9.4	545

#	Article	IF	CITATIONS
19	RNAalifold: improved consensus structure prediction for RNA alignments. BMC Bioinformatics, 2008, 9, 474.	1.2	505
20	Fast Mapping of Short Sequences with Mismatches, Insertions and Deletions Using Index Structures. PLoS Computational Biology, 2009, 5, e1000502.	1.5	487
21	Smoothness within ruggedness: the role of neutrality in adaptation Proceedings of the National Academy of Sciences of the United States of America, 1996, 93, 397-401.	3.3	473
22	Dual RNA-seq unveils noncoding RNA functions in host–pathogen interactions. Nature, 2016, 529, 496-501.	13.7	450
23	Inferring Noncoding RNA Families and Classes by Means of Genome-Scale Structure-Based Clustering. PLoS Computational Biology, 2007, 3, e65.	1.5	424
24	Recurrent mutation of the ID3 gene in Burkitt lymphoma identified by integrated genome, exome and transcriptome sequencing. Nature Genetics, 2012, 44, 1316-1320.	9.4	389
25	The Reality of Pervasive Transcription. PLoS Biology, 2011, 9, e1000625.	2.6	380
26	Mapping of conserved RNA secondary structures predicts thousands of functional noncoding RNAs in the human genome. Nature Biotechnology, 2005, 23, 1383-1390.	9.4	352
27	Multi-Platform Next-Generation Sequencing of the Domestic Turkey (Meleagris gallopavo): Genome Assembly and Analysis. PLoS Biology, 2010, 8, e1000475.	2.6	348
28	EVOLUTION: Transitions from Nonliving to Living Matter. Science, 2004, 303, 963-965.	6.0	339
29	Thermodynamics of RNA-RNA binding. Bioinformatics, 2006, 22, 1177-1182.	1.8	338
30	metilene: fast and sensitive calling of differentially methylated regions from bisulfite sequencing data. Genome Research, 2016, 26, 256-262.	2.4	331
31	The duck genome and transcriptome provide insight into an avian influenza virus reservoir species. Nature Genetics, 2013, 45, 776-783.	9.4	327
32	LocARNA-P: Accurate boundary prediction and improved detection of structural RNAs. Rna, 2012, 18, 900-914.	1.6	326
33	Improved annotation of protein-coding genes boundaries in metazoan mitochondrial genomes. Nucleic Acids Research, 2019, 47, 10543-10552.	6.5	324
34	Alu Elements in ANRIL Non-Coding RNA at Chromosome 9p21 Modulate Atherogenic Cell Functions through Trans-Regulation of Gene Networks. PLoS Genetics, 2013, 9, e1003588.	1.5	323
35	Centers of complex networks. Journal of Theoretical Biology, 2003, 223, 45-53.	0.8	317
36	The expansion of the metazoan microRNA repertoire. BMC Genomics, 2006, 7, 25.	1.2	304

#	Article	IF	CITATIONS
37	Sound–meaning association biases evidenced across thousands of languages. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 10818-10823.	3.3	285
38	Ecological plant epigenetics: Evidence from model and nonâ€model species, and the way forward. Ecology Letters, 2017, 20, 1576-1590.	3.0	279
39	CREx: inferring genomic rearrangements based on common intervals. Bioinformatics, 2007, 23, 2957-2958.	1.8	276
40	Statistics of RNA secondary structures. Biopolymers, 1993, 33, 1389-1404.	1.2	265
41	The Topology of the Possible: Formal Spaces Underlying Patterns of Evolutionary Change. Journal of Theoretical Biology, 2001, 213, 241-274.	0.8	265
42	A multi-split mapping algorithm for circular RNA, splicing, trans-splicing and fusion detection. Genome Biology, 2014, 15, R34.	13.9	242
43	Partition function and base pairing probabilities of RNA heterodimers. Algorithms for Molecular Biology, 2006, 1, 3.	0.3	239
44	Improved systematic tRNA gene annotation allows new insights into the evolution of mitochondrial tRNA structures and into the mechanisms of mitochondrial genome rearrangements. Nucleic Acids Research, 2012, 40, 2833-2845.	6.5	218
45	Local RNA base pairing probabilities in large sequences. Bioinformatics, 2006, 22, 614-615.	1.8	217
46	An updated human snoRNAome. Nucleic Acids Research, 2016, 44, 5068-5082.	6.5	216
47	Landscapes and their correlation functions. Journal of Mathematical Chemistry, 1996, 20, 1-45.	0.7	214
48	Genetic aspects of mitochondrial genome evolution. Molecular Phylogenetics and Evolution, 2013, 69, 328-338.	1.2	206
49	Alignment of RNA base pairing probability matrices. Bioinformatics, 2004, 20, 2222-2227.	1.8	205
50	RNA folding and combinatory landscapes. Physical Review E, 1993, 47, 2083-2099.	0.8	202
51	Combinatorial Landscapes. SIAM Review, 2002, 44, 3-54.	4.2	201
52	miRNAMap: genomic maps of microRNA genes and their target genes in mammalian genomes. Nucleic Acids Research, 2006, 34, D135-D139.	6.5	199
53	Generic properties of combinatory maps: Neutral networks of RNA secondary structures. Bulletin of Mathematical Biology, 1997, 59, 339-397.	0.9	189
54	RNAcode: Robust discrimination of coding and noncoding regions in comparative sequence data. Rna, 2011, 17, 578-594.	1.6	188

#	Article	IF	CITATIONS
55	Spontaneous and Engineered Deletions in the 3′ Noncoding Region of Tick-Borne Encephalitis Virus: Construction of Highly Attenuated Mutants of a Flavivirus. Journal of Virology, 1998, 72, 2132-2140.	1.5	187
56	Memory efficient folding algorithms for circular RNA secondary structures. Bioinformatics, 2006, 22, 1172-1176.	1.8	183
57	A comprehensive analysis of bilaterian mitochondrial genomes and phylogeny. Molecular Phylogenetics and Evolution, 2013, 69, 352-364.	1.2	183
58	Hairpins in a Haystack: recognizing microRNA precursors in comparative genomics data. Bioinformatics, 2006, 22, e197-e202.	1.8	180
59	RNAcentral: a comprehensive database of non-coding RNA sequences. Nucleic Acids Research, 2017, 45, D128-D134.	6.5	174
60	The "Fish-Specific―Hox Cluster Duplication Is Coincident with the Origin of Teleosts. Molecular Biology and Evolution, 2006, 23, 121-136.	3.5	170
61	Conserved RNA secondary structures in Flaviviridae genomes. Journal of General Virology, 2004, 85, 1113-1124.	1.3	165
62	De novo design of a synthetic riboswitch that regulates transcription termination. Nucleic Acids Research, 2013, 41, 2541-2551.	6.5	163
63	Small ncRNA transcriptome analysis from Aspergillus fumigatus suggests a novel mechanism for regulation of protein synthesis. Nucleic Acids Research, 2008, 36, 2677-2689.	6.5	162
64	Noisy: Identification of problematic columns in multiple sequence alignments. Algorithms for Molecular Biology, 2008, 3, 7.	0.3	154
65	RNAcentral: a hub of information for non-coding RNA sequences. Nucleic Acids Research, 2019, 47, D221-D229.	6. 5	153
66	Structured RNAs in the ENCODE selected regions of the human genome. Genome Research, 2007, 17, 852-864.	2.4	150
67	Prediction of locally stable RNA secondary structures for genome-wide surveys. Bioinformatics, 2004, 20, 186-190.	1.8	145
68	Widespread purifying selection on RNA structure in mammals. Nucleic Acids Research, 2013, 41, 8220-8236.	6.5	144
69	Genomic and Morphological Evidence Converge to Resolve the Enigma of Strepsiptera. Current Biology, 2012, 22, 1309-1313.	1.8	140
70	Evolution of microRNAs located withinHox gene clusters. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 2005, 304B, 75-85.	0.6	139
71	Structure of transfer RNAs: similarity and variability. Wiley Interdisciplinary Reviews RNA, 2012, 3, 37-61.	3.2	139
72	Design of multistable RNA molecules. Rna, 2001, 7, 254-265.	1.6	138

#	Article	IF	CITATIONS
73	Topology and prediction of RNA pseudoknots. Bioinformatics, 2011, 27, 1076-1085.	1.8	137
74	RNAz 2.0: improved noncoding RNA detection. Pacific Symposium on Biocomputing Pacific Symposium on Biocomputing, 2010, , 69-79.	0.7	135
7 5	Barrier Trees of Degenerate Landscapes. Zeitschrift Fur Physikalische Chemie, 2002, 216, .	1.4	130
76	Evolution of Vault RNAs. Molecular Biology and Evolution, 2009, 26, 1975-1991.	3. 5	130
77	Partition function and base pairing probabilities for RNA–RNA interaction prediction. Bioinformatics, 2009, 25, 2646-2654.	1.8	124
78	<scp>RNA</scp> snp: Efficient Detection of Local <scp>RNA</scp> Secondary Structure Changes Induced by <scp>SNP</scp> s. Human Mutation, 2013, 34, 546-556.	1.1	121
79	The landscape of the traveling salesman problem. Physics Letters, Section A: General, Atomic and Solid State Physics, 1992, 161, 337-344.	0.9	120
80	Combinatorics of RNA secondary structures. Discrete Applied Mathematics, 1998, 88, 207-237.	0.5	120
81	Evidence for human microRNA-offset RNAs in small RNA sequencing data. Bioinformatics, 2009, 25, 2298-2301.	1.8	120
82	DNA methylome analysis in Burkitt and follicular lymphomas identifies differentially methylated regions linked to somatic mutation and transcriptional control. Nature Genetics, 2015, 47, 1316-1325.	9.4	119
83	RNApredator: fast accessibility-based prediction of sRNA targets. Nucleic Acids Research, 2011, 39, W149-W154.	6.5	117
84	The RNAsnp web server: predicting SNP effects on local RNA secondary structure. Nucleic Acids Research, 2013, 41, W475-W479.	6.5	117
85	<tt>SnoReport</tt> : computational identification of snoRNAs with unknown targets. Bioinformatics, 2008, 24, 158-164.	1.8	116
86	Automatic detection of conserved RNA structure elements in complete RNA virus genomes. Nucleic Acids Research, 1998, 26, 3825-3836.	6.5	115
87	Evolution of the let-7 microRNA Family. RNA Biology, 2012, 9, 231-241.	1.5	115
88	HLA-DRB1â^—0401 and HLA-DRB1â^—0408 Are Strongly Associated with the Development of Antibodies against Interferon-β Therapy in Multiple Sclerosis. American Journal of Human Genetics, 2008, 83, 219-227.	2.6	114
89	Analysis of RNA sequence structure maps by exhaustive enumeration I. Neutral networks. Monatshefte FÃ $\frac{1}{4}$ r Chemie, 1996, 127, 355-374.	0.9	112
90	Laplacian Eigenvectors of Graphs. Lecture Notes in Mathematics, 2007, , .	0.1	112

#	Article	IF	Citations
91	Accurate and efficient reconstruction of deep phylogenies from structured RNAs. Nucleic Acids Research, 2009, 37, 6184-6193.	6.5	108
92	Fitness landscapes. , 2002, , 183-204.		106
93	RNA folding with soft constraints: reconciliation of probing data and thermodynamic secondary structure prediction. Nucleic Acids Research, 2012, 40, 4261-4272.	6.5	106
94	Lacking alignments? The next-generation sequencing mapper segemehl revisited. Bioinformatics, 2014, 30, 1837-1843.	1.8	105
95	Independent Hox-cluster duplications in lampreys. The Journal of Experimental Zoology, 2003, 299B, 18-25.	1.4	102
96	Neutral networks in protein space: a computational study based on knowledge-based potentials of mean force. Folding & Design, 1997, 2, 261-269.	4.5	100
97	Efficient computation of RNA folding dynamics. Journal of Physics A, 2004, 37, 4731-4741.	1.6	99
98	Detection of small RNAs in Pseudomonas aeruginosa by RNomics and structure-based bioinformatic tools. Microbiology (United Kingdom), 2008, 154, 3175-3187.	0.7	99
99	Genomic and transcriptomic changes complement each other in the pathogenesis of sporadic Burkitt lymphoma. Nature Communications, 2019, 10, 1459.	5.8	99
100	Discrete nodal domain theorems. Linear Algebra and Its Applications, 2001, 336, 51-60.	0.4	97
101	Third Report on Chicken Genes and Chromosomes 2015. Cytogenetic and Genome Research, 2015, 145, 78-179.	0.6	97
102	Analysis of RNA sequence structure maps by exhaustive enumeration II. Structures of neutral networks and shape space covering. Monatshefte FÃ $\frac{1}{4}$ r Chemie, 1996, 127, 375-389.	0.9	94
103	Genome-wide transcriptome analysis of the plant pathogen Xanthomonas identifies sRNAs with putative virulence functions. Nucleic Acids Research, 2012, 40, 2020-2031.	6.5	93
104	Genomic organization of eukaryotic tRNAs. BMC Genomics, 2010, 11, 270.	1.2	91
105	SHAPE directed RNA folding. Bioinformatics, 2016, 32, 145-147.	1.8	91
106	MINCR is a MYC-induced IncRNA able to modulate MYC's transcriptional network in Burkitt lymphoma cells. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E5261-70.	3.3	91
107	Neutrality in fitness landscapes. Applied Mathematics and Computation, 2001, 117, 321-350.	1.4	89
108	Bichir HoxA Cluster Sequence Reveals Surprising Trends in Ray-Finned Fish Genomic Evolution. Genome Research, 2003, 14, 11-17.	2.4	89

#	Article	IF	Citations
109	FRANz: reconstruction of wild multi-generation pedigrees. Bioinformatics, 2009, 25, 2134-2139.	1.8	89
110	RNA folding with hard and soft constraints. Algorithms for Molecular Biology, 2016, 11, 8.	0.3	89
111	The Coilin Interactome Identifies Hundreds of Small Noncoding RNAs that Traffic through Cajal Bodies. Molecular Cell, 2014, 56, 389-399.	4.5	88
112	Changes of bivalent chromatin coincide with increased expression of developmental genes in cancer. Scientific Reports, 2016, 6, 37393.	1.6	88
113	Orthology Detection Combining Clustering and Synteny for Very Large Datasets. PLoS ONE, 2014, 9, e105015.	1.1	86
114	Conserved RNA secondary structures in Picornaviridae genomes. Nucleic Acids Research, 2001, 29, 5079-5089.	6.5	84
115	Phylogenomics with paralogs. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 2058-2063.	3.3	83
116	Comparison of splice sites reveals that long noncoding RNAs are evolutionarily well conserved. Rna, 2015, 21, 801-812.	1.6	83
117	A Graph-Based Toy Model of Chemistry. Journal of Chemical Information and Computer Sciences, 2003, 43, 1085-1093.	2.8	82
118	Evidence for independent Hox gene duplications in the hagfish lineage: a PCR-based gene inventory of Eptatretus stoutii. Molecular Phylogenetics and Evolution, 2004, 32, 686-694.	1.2	82
119	DARIO: a ncRNA detection and analysis tool for next-generation sequencing experiments. Nucleic Acids Research, 2011, 39, W112-W117.	6.5	82
120	The CHR site: definition and genome-wide identification of a cell cycle transcriptional element. Nucleic Acids Research, 2014, 42, 10331-10350.	6.5	82
121	RNA Structures with Pseudo-knots: Graph-theoretical, Combinatorial, and Statistical Properties. Bulletin of Mathematical Biology, 1999, 61, 437-467.	0.9	81
122	Algorithm independent properties of RNA secondary structure predictions. European Biophysics Journal, 1996, 25, 115-130.	1.2	79
123	Evolution of Spliceosomal snRNA Genes in Metazoan Animals. Journal of Molecular Evolution, 2008, 67, 594-607.	0.8	79
124	Structure and Function of the Smallest Vertebrate Telomerase RNA from Teleost Fish. Journal of Biological Chemistry, 2008, 283, 2049-2059.	1.6	78
125	Temperature-responsive in vitro RNA structurome of <i>Yersinia pseudotuberculosis</i> of the National Academy of Sciences of the United States of America, 2016, 113, 7237-7242.	3.3	78
126	Mutation in autocatalytic reaction networks. Journal of Mathematical Biology, 1992, 30, 597-631.	0.8	77

#	Article	IF	CITATIONS
127	Folding Kinetics of Large RNAs. Journal of Molecular Biology, 2008, 379, 160-173.	2.0	77
128	A guide to naming human nonâ€coding RNA genes. EMBO Journal, 2020, 39, e103777.	3.5	77
129	Evolution of 7SK RNA and Its Protein Partners in Metazoa. Molecular Biology and Evolution, 2009, 26, 2821-2830.	3.5	76
130	RIsearch2: suffix array-based large-scale prediction of RNA–RNA interactions and siRNA off-targets. Nucleic Acids Research, 2017, 45, gkw1325.	6.5	75
131	Generalized Topological Spaces in Evolutionary Theory and Combinatorial Chemistry. Journal of Chemical Information and Computer Sciences, 2002, 42, 577-585.	2.8	73
132	Evolution of mitochondrial gene orders in echinoderms. Molecular Phylogenetics and Evolution, 2008, 47, 855-864.	1.2	73
133	TSSAR: TSS annotation regime for dRNA-seq data. BMC Bioinformatics, 2014, 15, 89.	1.2	73
134	Generic properties of combinatory maps: Neutral networks of RNA secondary structures. Bulletin of Mathematical Biology, 1997, 59, 339-397.	0.9	72
135	Landscapes: Complex optimization problems and biopolymer structures. Computers & Chemistry, 1994, 18, 295-324.	1.2	70
136	The common ancestral core of vertebrate and fungal telomerase RNAs. Nucleic Acids Research, 2013, 41, 450-462.	6.5	70
137	Algebraic Theory of Recombination Spaces. Evolutionary Computation, 1997, 5, 241-275.	2.3	68
138	Viral RNA and evolved mutational robustness., 1999, 285, 119-127.		68
139	RNAZ 2.0:., 2009,, 69-79.		68
140	Kiwi genome provides insights into evolution of a nocturnal lifestyle. Genome Biology, 2015, 16, 147.	3.8	68
141	Effect of pH on growth, cell volume, and production of freshwater ciliates, and implications for their distribution. Limnology and Oceanography, 2006, 51, 1708-1715.	1.6	67
142	RNAcentral: A vision for an international database of RNA sequences. Rna, 2011, 17, 1941-1946.	1.6	67
143	Random catalytic reaction networks. Physica D: Nonlinear Phenomena, 1993, 63, 378-392.	1.3	66
144	Quasi-Independence, Homology and the Unity of Type: A Topological Theory of Characters. Journal of Theoretical Biology, 2003, 220, 505-527.	0.8	66

#	Article	IF	Citations
145	Mitochondrial genome evolution in Ophiuroidea, Echinoidea, and Holothuroidea: Insights in phylogenetic relationships of Echinodermata. Molecular Phylogenetics and Evolution, 2010, 56, 201-211.	1.2	66
146	Recent advances in RNA folding. Journal of Biotechnology, 2017, 261, 97-104.	1.9	66
147	Full characterization of a strange attractor. Physica D: Nonlinear Phenomena, 1991, 48, 65-90.	1.3	65
148	RNA multi-structure landscapes. European Biophysics Journal, 1993, 22, 13-24.	1.2	65
149	Variations on RNA folding and alignment: lessons from Benasque. Journal of Mathematical Biology, 2007, 56, 129-144.	0.8	65
150	Complete HOX cluster characterization of the coelacanth provides further evidence for slow evolution of its genome. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 3622-3627.	3.3	65
151	Evolutionary patterns of non-coding RNAs. Theory in Biosciences, 2005, 123, 301-369.	0.6	64
152	Exploration of the chemical space and its three historical regimes. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 12660-12665.	3.3	64
153	Structural profiles of human miRNA families from pairwise clustering. Bioinformatics, 2009, 25, 291-294.	1.8	62
154	Orthology relations, symbolic ultrametrics, and cographs. Journal of Mathematical Biology, 2013, 66, 399-420.	0.8	62
155	In vitro iCLIP-based modeling uncovers how the splicing factor U2AF2 relies on regulation by cofactors. Genome Research, 2018, 28, 699-713.	2.4	62
156	RELEVANT CYCLES IN CHEMICAL REACTION NETWORKS. International Journal of Modeling, Simulation, and Scientific Computing, 2001, 04, 207-226.	0.9	61
157	DREAM and RB cooperate to induce gene repression and cell-cycle arrest in response to p53 activation. Nucleic Acids Research, 2019, 47, 9087-9103.	6.5	61
158	Random field models for fitness landscapes. Journal of Mathematical Biology, 1999, 38, 435-478.	0.8	60
159	Solvent Exposure Imparts Similar Selective Pressures across a Range of Yeast Proteins. Molecular Biology and Evolution, 2009, 26, 1155-1161.	3.5	60
160	Evolutionary clues in <scp>lncRNAs</scp> . Wiley Interdisciplinary Reviews RNA, 2017, 8, e1376.	3.2	60
161	Towards a theory of landscapes. , 1995, , 78-163.		59
162	A folding algorithm for extended RNA secondary structures. Bioinformatics, 2011, 27, i129-i136.	1.8	59

#	Article	IF	CITATIONS
163	RNA structures and folding: from conventional to new issues in structure predictions. Current Opinion in Structural Biology, 1997, 7, 229-235.	2.6	58
164	Target prediction and a statistical sampling algorithm for RNA–RNA interaction. Bioinformatics, 2010, 26, 175-181.	1.8	57
165	Biological evidence for the world's smallest tRNAs. Biochimie, 2014, 100, 151-158.	1.3	57
166	Non-coding RNA annotation of the genome of Trichoplax adhaerens. Nucleic Acids Research, 2009, 37, 1602-1615.	6.5	56
167	The challenges and scope of theoretical biology. Journal of Theoretical Biology, 2011, 276, 269-276.	0.8	56
168	Dicerâ€Processed Small RNAs: Rules and Exceptions. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 2013, 320, 35-46.	0.6	56
169	The tedious task of finding homologous noncoding RNA genes. Rna, 2009, 15, 2075-2082.	1.6	55
170	Evolution of the vertebrate Y RNA cluster. Theory in Biosciences, 2007, 126, 9-14.	0.6	54
171	Traces of post-transcriptional RNA modifications in deep sequencing data. Biological Chemistry, 2011, 392, 305-13.	1.2	54
172	Automatic detection of conserved base pairing patterns in RNA virus genomes. Computers & Chemistry, 1999, 23, 401-414.	1.2	53
173	BarMap: RNA folding on dynamic energy landscapes. Rna, 2010, 16, 1308-1316.	1.6	53
174	<tt>PLEXY</tt> : efficient target prediction for box C/D snoRNAs. Bioinformatics, 2011, 27, 279-280.	1.8	53
175	Armless mitochondrial tRNAs in Enoplea (Nematoda). RNA Biology, 2012, 9, 1161-1166.	1.5	53
176	Why Some Fitness Landscapes are Fractal. Journal of Theoretical Biology, 1993, 163, 255-275.	0.8	52
177	Multiple sequence alignment with user-defined anchor points. Algorithms for Molecular Biology, 2006, 1, 6.	0.3	52
178	Applicability of a computational design approach for synthetic riboswitches. Nucleic Acids Research, 2017, 45, gkw1267.	6.5	52
179	The genomic and transcriptional landscape of primary central nervous system lymphoma. Nature Communications, 2022, 13, 2558.	5.8	52
180	Prediction of consensus RNA secondary structures including pseudoknots. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2004, 1, 66-77.	1.9	51

#	Article	IF	CITATIONS
181	Homology-based annotation of non-coding RNAs in the genomes of Schistosoma mansoni and Schistosoma japonicum. BMC Genomics, 2009, 10, 464.	1.2	51
182	Fast and sensitive mapping of bisulfite-treated sequencing data. Bioinformatics, 2012, 28, 1698-1704.	1.8	51
183	Matching of Soulmates: Coevolution of snoRNAs and Their Targets. Molecular Biology and Evolution, 2014, 31, 455-467.	3.5	51
184	The amphioxus <i>Hox</i> cluster: characterization, comparative genomics, and evolution. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 2008, 310B, 465-477.	0.6	50
185	Design of Artificial Riboswitches as Biosensors. Sensors, 2017, 17, 1990.	2.1	50
186	Exploring Protein Sequence Space Using Knowledge-based Potentials. Journal of Theoretical Biology, 2001, 212, 35-46.	0.8	49
187	The effect of RNA secondary structures on RNA-ligand binding and the modifier RNA mechanism: a quantitative model. Gene, 2005, 345, 3-12.	1.0	49
188	Alignments of mitochondrial genome arrangements: Applications to metazoan phylogeny. Journal of Theoretical Biology, 2006, 240, 511-520.	0.8	49
189	<tt>RNAsnoop</tt> : efficient target prediction for H/ACA snoRNAs. Bioinformatics, 2010, 26, 610-616.	1.8	49
190	Fast accessibility-based prediction of RNA–RNA interactions. Bioinformatics, 2011, 27, 1934-1940.	1.8	48
191	Chromatin measurements reveal contributions of synthesis and decay to steadyâ€state mRNA levels. Molecular Systems Biology, 2012, 8, 593.	3.2	48
192	The mitochondrial DNA of Xenoturbella bocki: genomic architecture and phylogenetic analysis. Theory in Biosciences, 2007, 126, 35-42.	0.6	47
193	Challenges in RNA virus bioinformatics. Bioinformatics, 2014, 30, 1793-1799.	1.8	47
194	Differential transcriptional responses to Ebola and Marburg virus infection in bat and human cells. Scientific Reports, 2016, 6, 34589.	1.6	47
195	A Support Vector Machine based method to distinguish long non-coding RNAs from protein coding transcripts. BMC Genomics, 2017, 18, 804.	1.2	47
196	Sensitivity of Microarray Oligonucleotide Probes:Â Variability and Effect of Base Composition. Journal of Physical Chemistry B, 2004, 108, 18003-18014.	1.2	46
197	RNAs everywhere: genome-wide annotation of structured RNAs. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 2007, 308B, 1-25.	0.6	46
198	Statistics of RNA melting kinetics. European Biophysics Journal, 1994, 23, 29-38.	1.2	45

#	Article	IF	CITATIONS
199	Surveying phylogenetic footprints in large gene clusters: applications to Hox cluster duplications. Molecular Phylogenetics and Evolution, 2004, 31, 581-604.	1.2	45
200	Arthropod 7SK RNA. Molecular Biology and Evolution, 2008, 25, 1923-1930.	3.5	45
201	Innovation in gene regulation: The case of chromatin computation. Journal of Theoretical Biology, 2010, 265, 27-44.	0.8	45
202	Error Thresholds on Correlated Fitness Landscapes. Journal of Theoretical Biology, 1993, 164, 359-372.	0.8	44
203	Potential toxicity of chrysophytes affiliated with Poterioochromonas and related 'Spumella-like' flagellates. Journal of Plankton Research, 2004, 26, 1507-1514.	0.8	44
204	New journal: Algorithms for Molecular Biology. Algorithms for Molecular Biology, 2006, 1, 1.	0.3	44
205	The Expansion of Animal MicroRNA Families Revisited. Life, 2015, 5, 905-920.	1.1	44
206	Conserved RNA secondary structures in viral genomes: a survey. Bioinformatics, 2004, 20, 1495-1499.	1.8	43
207	Optimization of parameters for coverage of low molecular weight proteins. Analytical and Bioanalytical Chemistry, 2010, 398, 2867-2881.	1.9	43
208	The correlation of genome size and DNA methylation rate in metazoans. Theory in Biosciences, 2013, 132, 47-60.	0.6	43
209	Atypical RNAs in the coelacanth transcriptome. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 2014, 322, 342-351.	0.6	43
210	Alterations of microRNA and microRNA-regulated messenger RNA expression in germinal center B-cell lymphomas determined by integrative sequencing analysis. Haematologica, 2016, 101, 1380-1389.	1.7	43
211	Genome size evolution at the speciation level: The cryptic species complex Brachionus plicatilis(Rotifera). BMC Evolutionary Biology, 2011, 11, 90.	3.2	42
212	Amplitude Spectra of Fitness Landscapes. International Journal of Modeling, Simulation, and Scientific Computing, 1998, 01, 39-66.	0.9	41
213	Design criteria for synthetic riboswitches acting on transcription. RNA Biology, 2015, 12, 221-231.	1.5	41
214	Combined Experimental and System-Level Analyses Reveal the Complex Regulatory Network of miR-124 during Human Neurogenesis. Cell Systems, 2018, 7, 438-452.e8.	2.9	41
215	The duplication of the Hox gene clusters in teleost fishes*1. Theory in Biosciences, 2004, 123, 89-110.	0.6	40
216	Non-coding RNAs in Ciona intestinalis. Bioinformatics, 2005, 21, ii77-ii78.	1.8	39

#	Article	IF	Citations
217	Prediction of structured non-coding RNAs in the genomes of the nematodesCaenorhabditis elegans andCaenorhabditis briggsae. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 2006, 306B, 379-392.	0.6	39
218	Near Intron Positions Are Reliable Phylogenetic Markers: An Application to Holometabolous Insects. Molecular Biology and Evolution, 2008, 25, 821-830.	3.5	39
219	Sequence assembly. Computational Biology and Chemistry, 2009, 33, 121-136.	1.1	39
220	Maximizing output and recognizing autocatalysis in chemical reaction networks is NP-complete. Journal of Systems Chemistry, 2012, 3, .	1.7	39
221	Basin Hopping Graph: a computational framework to characterize RNA folding landscapes. Bioinformatics, 2014, 30, 2009-2017.	1.8	39
222	Uncovering missing pieces: duplication and deletion history of arrestins in deuterostomes. BMC Evolutionary Biology, 2017, 17, 163.	3.2	39
223	Computational RNomics of Drosophilids. BMC Genomics, 2007, 8, 406.	1.2	38
224	Conserved introns reveal novel transcripts in <i>Drosophila melanogaster</i> . Genome Research, 2009, 19, 1289-1300.	2.4	38
225	Navigating the Chemical Space of HCN Polymerization and Hydrolysis: Guiding Graph Grammars by Mass Spectrometry Data. Entropy, 2013, 15, 4066-4083.	1.1	38
226	The RNA workbench: best practices for RNA and high-throughput sequencing bioinformatics in Galaxy. Nucleic Acids Research, 2017, 45, W560-W566.	6.5	38
227	MOLECULAR REPLICATOR DYNAMICS. International Journal of Modeling, Simulation, and Scientific Computing, 2003, 06, 47-77.	0.9	37
228	RNase MRP and the RNA processing cascade in the eukaryotic ancestor. BMC Evolutionary Biology, 2007, 7, S13.	3.2	37
229	Invertebrate 7SK snRNAs. Journal of Molecular Evolution, 2008, 66, 107-115.	0.8	37
230	2D Meets 4G: G-Quadruplexes in RNA Secondary Structure Prediction. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2013, 10, 832-844.	1.9	37
231	Identification of new protein coding sequences and signal peptidase cleavage sites of Helicobacter pylori strain 26695 by proteogenomics. Journal of Proteomics, 2013, 86, 27-42.	1.2	37
232	Cell cycle, oncogenic and tumor suppressor pathways regulate numerous long and macro non-protein-coding RNAs. Genome Biology, 2014, 15, R48.	13.9	37
233	HumanMetagenomeDB: a public repository of curated and standardized metadata for human metagenomes. Nucleic Acids Research, 2021, 49, D743-D750.	6. 5	37
234	Landscapes and Effective Fitness. Comments on Theoretical Biology, 2003, 8, 389-431.	0.6	37

#	Article	IF	Citations
235	Statistics of landscapes based on free energies, replication and degradation rate constants of RNA secondary structures. Monatshefte FÃ $\frac{1}{4}$ r Chemie, 1991, 122, 795-819.	0.9	36
236	Molecular Evolution of Duplicated Ray Finned Fish HoxA Clusters: Increased Synonymous Substitution Rate and Asymmetrical Co-divergence of Coding and Non-coding Sequences. Journal of Molecular Evolution, 2005, 60, 665-676.	0.8	36
237	Modeling amino acid substitution patterns in orthologous and paralogous genes. Molecular Phylogenetics and Evolution, 2007, 42, 298-307.	1.2	36
238	Trichoplax genomes reveal profound admixture and suggest stable wild populations without bisexual reproduction. Scientific Reports, 2018, 8, 11168.	1.6	36
239	Exclusion of repetitive DNA elements from gnathostomeHox clusters. The Journal of Experimental Zoology, 2004, 302B, 165-173.	1.4	35
240	A Pipeline for Computational Historical Linguistics. Language Dynamics and Change, 2011, 1, 89-127.	0.4	35
241	GC skew and mitochondrial origins of replication. Mitochondrion, 2014, 17, 56-66.	1.6	35
242	Human pathways in animal models: possibilities and limitations. Nucleic Acids Research, 2021, 49, 1859-1871.	6.5	35
243	Population Dependent Fourier Decomposition of Fitness Landscapes over Recombination Spaces: Evolvability of Complex Characters. Bulletin of Mathematical Biology, 2000, 62, 399-428.	0.9	34
244	Multiple sequence alignment with user-defined constraints at GOBICS. Bioinformatics, 2005, 21, 1271-1273.	1.8	34
245	Mutational mechanisms shaping the coding and noncoding genome of germinal center derived B-cell lymphomas. Leukemia, 2021, 35, 2002-2016.	3.3	34
246	Algebraic comparison of metabolic networks, phylogenetic inference, and metabolic innovation. BMC Bioinformatics, 2006, 7, 67.	1.2	33
247	Accurate mapping of tRNA reads. Bioinformatics, 2018, 34, 1116-1124.	1.8	33
248	Proto-Organism Kinetics: Evolutionary Dynamics of Lipid Aggregates with Genes and Metabolism. Origins of Life and Evolution of Biospheres, 2004, 34, 171-180.	0.8	32
249	Counterexamples in Chemical Ring Perceptionâ€. Journal of Chemical Information and Computer Sciences, 2004, 44, 323-331.	2.8	32
250	Evolution of MicroRNAs. , 2006, 342, 335-350.		32
251	Comparative analysis of structured RNAs in S. cerevisiae indicates a multitude of different functions. BMC Biology, 2007, 5, 25.	1.7	32
252	Nematode sbRNAs: Homologs of Vertebrate Y RNAs. Journal of Molecular Evolution, 2010, 70, 346-358.	0.8	32

#	Article	IF	Citations
253	Enrichment and identification of small proteins in a simplified human gut microbiome. Journal of Proteomics, 2020, 213, 103604.	1.2	32
254	Minimal Cycle Bases of Outerplanar Graphs. Electronic Journal of Combinatorics, 1998, 5, .	0.2	32
255	Fast Fourier Transform for Fitness Landscapes. Applied and Computational Harmonic Analysis, 2002, 12, 57-76.	1.1	31
256	Genotype-Phenotype Maps. Biological Theory, 2006, 1, 268-279.	0.8	31
257	Bioinformatics methods for the comparative analysis of metazoan mitochondrial genome sequences. Molecular Phylogenetics and Evolution, 2013, 69, 320-327.	1.2	31
258	A Software Package for Chemically Inspired Graph Transformation. Lecture Notes in Computer Science, 2016, , 73-88.	1.0	31
259	Chemical Transformation Motifs—Modelling Pathways as Integer Hyperflows. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2019, 16, 510-523.	1.9	31
260	Animal snoRNAs and scaRNAs with exceptional structures. RNA Biology, 2011, 8, 938-946.	1.5	30
261	Bio-molecular shapes and algebraic structures. Computers & Chemistry, 1996, 20, 85-94.	1.2	29
262	Correlation length, isotropy and meta-stable states. Physica D: Nonlinear Phenomena, 1997, 107, 240-254.	1.3	29
263	From event-labeled gene trees to species trees. BMC Bioinformatics, 2012, 13, .	1.2	29
264	Base Pairing Probabilities in a Complete HIV-1 RNA. Journal of Computational Biology, 1996, 3, 253-274.	0.8	28
265	Dynamics of Autocatalytic Replicator Networks Based on Higher-order Ligation Reactions. Bulletin of Mathematical Biology, 2000, 62, 1061-1086.	0.9	28
266	Comparative promoter region analysis powered by CORG. BMC Genomics, 2005, 6, 24.	1.2	28
267	Inferring chemical reaction patterns using rule composition in graph grammars. Journal of Systems Chemistry, 2013, 4, .	1.7	28
268	The paralog-to-contig assignment problem: high quality gene models from fragmented assemblies. Algorithms for Molecular Biology, 2016, 11 , 1 .	0.3	28
269	DNA methylation signature in blood mirrors successful weight-loss during lifestyle interventions: the CENTRAL trial. Genome Medicine, 2020, 12, 97.	3.6	28
270	Correlation structure of the landscape of the graph-bipartitioning problem. Journal of Physics A, 1992, 25, 3103-3110.	1.6	27

#	Article	IF	Citations
271	The Evolution of Diversity in Replicator Networks. Journal of Theoretical Biology, 1998, 195, 329-338.	0.8	27
272	Prediction of RNA Base Pairing Probabilities on Massively Parallel Computers. Journal of Computational Biology, 2000, 7, 171-182.	0.8	27
273	Computational design of RNAs with complex energy landscapes. Biopolymers, 2013, 99, n/a-n/a.	1.2	27
274	A first Glimpse at the genome of the Baikalian amphipod <i>Eulimnogammarus verrucosus </i> . Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 2014, 322, 177-189.	0.6	27
275	RNAstrand: reading direction of structured RNAs in multiple sequence alignments. Algorithms for Molecular Biology, 2007, 2, 6.	0.3	26
276	PCR survey of <i>Xenoturbella bocki</i> Hox genes. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 2008, 310B, 278-284.	0.6	26
277	Generic strategies for chemical space exploration. International Journal of Computational Biology and Drug Design, 2014, 7, 225.	0.3	26
278	The mathematics of xenology: di-cographs, symbolic ultrametrics, 2-structures and tree-representable systems of binary relations. Journal of Mathematical Biology, 2017, 75, 199-237.	0.8	26
279	STAT3-induced long noncoding RNAs in multiple myeloma cells display different properties in cancer. Scientific Reports, 2017, 7, 7976.	1.6	26
280	Inferring Non-Coding RNA Families and Classes by Means of Genome-Scale Structure-Based Clustering. PLoS Computational Biology, 2005, preprint, e65.	1.5	26
281	RNA In Silico The Computational Biology of RNA Secondary Structures. International Journal of Modeling, Simulation, and Scientific Computing, 1999, 02, 65-90.	0.9	25
282	Interactions in Oligonucleotide Hybrid Duplexes on Microarrays. Journal of Physical Chemistry B, 2004, 108, 18015-18025.	1.2	25
283	Multiple sequence alignments of partially coding nucleic acid sequences. BMC Bioinformatics, 2005, 6, 160.	1.2	25
284	maxAlike: maximum likelihood-based sequence reconstruction with application to improved primer design for unknown sequences. Bioinformatics, 2011, 27, 317-325.	1.8	25
285	TerrestrialMetagenomeDB: a public repository of curated and standardized metadata for terrestrial metagenomes. Nucleic Acids Research, 2020, 48, D626-D632.	6.5	25
286	Anisotropy in Fitness Landscapes. Journal of Theoretical Biology, 1993, 165, 373-388.	0.8	24
287	Divergence of Conserved Non-Coding Sequences: Rate Estimates and Relative Rate Tests. Molecular Biology and Evolution, 2004, 21, 2116-2121.	3.5	24
288	PCR survey of hox genes in the goldfishCarassius auratus auratus. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 2007, 308B, 250-258.	0.6	24

#	Article	IF	CITATIONS
289	Comparative analysis of eukaryotic U3 snoRNA. RNA Biology, 2009, 6, 503-507.	1.5	24
290	Computational discovery of human coding and non-coding transcripts with conserved splice sites. Bioinformatics, 2011, 27, 1894-1900.	1.8	24
291	Computational biology of RNA interactions. Wiley Interdisciplinary Reviews RNA, 2013, 4, 107-120.	3.2	24
292	Dynamics of small autocatalytic reaction networks—II. Replication, mutation and catalysis. Bulletin of Mathematical Biology, 1995, 57, 21-61.	0.9	23
293	Landscape statistics of the low-autocorrelation binary string problem. Journal of Physics A, 2000, 33, 8635-8647.	1.6	23
294	Bcheck: a wrapper tool for detecting RNase P RNA genes. BMC Genomics, 2010, 11, 432.	1.2	23
295	<tt>snoStrip</tt> : a snoRNA annotation pipeline. Bioinformatics, 2014, 30, 115-116.	1.8	23
296	A priori assessment of data quality in molecular phylogenetics. Algorithms for Molecular Biology, $2014, 9, .$	0.3	23
297	Pseudoknots in RNA folding landscapes. Bioinformatics, 2016, 32, 187-194.	1.8	23
298	Reconstructing gene trees from Fitch's xenology relation. Journal of Mathematical Biology, 2018, 77, 1459-1491.	0.8	23
299	Error propagation in the hypercycle. Physical Review E, 2000, 61, 2996-3002.	0.8	22
300	Graph Laplacians, nodal domains, and hyperplane arrangements. Linear Algebra and Its Applications, 2004, 390, 155-174.	0.4	22
301	The Shark HoxN Cluster Is Homologous to the Human HoxD Cluster. Journal of Molecular Evolution, 2004, 58, 212-217.	0.8	22
302	Defining genes: a computational framework. Theory in Biosciences, 2009, 128, 165-170.	0.6	22
303	"Hypothesis for the Modern RNA World― A pervasive Non-coding RNA-Based Genetic Regulation is a Prerequisite for the Emergence of Multicellular Complexity. Origins of Life and Evolution of Biospheres, 2011, 41, 587-607.	0.8	22
304	Towards a comprehensive picture of alloacceptor tRNA remolding in metazoan mitochondrial genomes. Nucleic Acids Research, 2015, 43, 8044-8056.	6.5	22
305	Accurate annotation of protein-coding genes in mitochondrial genomes. Molecular Phylogenetics and Evolution, 2017, 106, 209-216.	1.2	22
306	LOTTE-seq (Long hairpin oligonucleotide based tRNA high-throughput sequencing): specific selection of tRNAs with 3'-CCA end for high-throughput sequencing. RNA Biology, 2020, 17, 23-32.	1.5	22

#	Article	IF	CITATIONS
307	Lifestyle weight-loss intervention may attenuate methylation aging: the CENTRAL MRI randomized controlled trial. Clinical Epigenetics, 2021, 13, 48.	1.8	22
308	Recombination Spaces, Metrics, and Pretopologies. Zeitschrift Fur Physikalische Chemie, 2002, 216, .	1.4	21
309	Shaking a box of sand. Europhysics Letters, 2002, 57, 46-52.	0.7	21
310	The Topology of Evolutionary Biology. Natural Computing Series, 2004, , 267-286.	2.2	21
311	Fragrep: An Efficient Search Tool for Fragmented Patterns in Genomic Sequences. Genomics, Proteomics and Bioinformatics, 2006, 4, 56-60.	3.0	21
312	A survey of nematode SmY RNAs. RNA Biology, 2009, 6, 5-8.	1.5	21
313	A novel family of plasmid-transferred anti-sense ncRNAs. RNA Biology, 2010, 7, 120-124.	1.5	21
314	Prevalent and distinct spliceosomal $3\hat{a}\in^2$ -end processing mechanisms for fungal telomerase RNA. Nature Communications, 2015, 6, 6105.	5.8	21
315	RNA-bioinformatics: Tools, services and databases for the analysis of RNA-based regulation. Journal of Biotechnology, 2017, 261, 76-84.	1.9	21
316	Moderate weather extremes alter phytoplankton diversity—A microcosm study. Freshwater Biology, 2018, 63, 1211-1224.	1.2	21
317	Translational Control by RNA-RNA Interaction: Improved Computation of RNA-RNA Binding Thermodynamics. Communications in Computer and Information Science, 2008, , 114-127.	0.4	21
318	On the evolution of primitive genetic codes. Origins of Life and Evolution of Biospheres, 2003, 33, 491-514.	0.8	20
319	G-stack modulated probe intensities on expression arrays - sequence corrections and signal calibration. BMC Bioinformatics, 2010, 11, 207.	1.2	20
320	plantDARIO: web based quantitative and qualitative analysis of small RNA-seq data in plants. Frontiers in Plant Science, 2014, 5, 708.	1.7	20
321	Structured RNAs and synteny regions in the pig genome. BMC Genomics, 2014, 15, 459.	1.2	20
322	Orthologs, turn-over, and remolding of tRNAs in primates and fruit flies. BMC Genomics, 2016, 17, 617.	1.2	20
323	Ryūtŕ network-flow based transcriptome reconstruction. BMC Bioinformatics, 2019, 20, 190.	1.2	20
324	The probability of permanence. Mathematical Biosciences, 1993, 113, 25-50.	0.9	19

#	Article	IF	CITATIONS
325	Fitness landscapes arising from the sequence-structure maps of biopolymers. Computational and Theoretical Chemistry, 1999, 463, 7-19.	1.5	19
326	RNA Shape Space Topology. Artificial Life, 2000, 6, 3-23.	1.0	19
327	Barrier Trees on Poset-Valued Landscapes. Genetic Programming and Evolvable Machines, 2003, 4, 7-20.	1.5	19
328	Minimum cycle bases of Halin graphs. Journal of Graph Theory, 2003, 43, 150-155.	0.5	19
329	Exploring the lower part of discrete polymer model energy landscapes. Europhysics Letters, 2006, 74, 726-732.	0.7	19
330	Progressive multiple sequence alignments from triplets. BMC Bioinformatics, 2007, 8, 254.	1.2	19
331	The enigmatic mitochondrial genome of Rhabdopleura compacta(Pterobranchia) reveals insights into selection of an efficient tRNA system and supports monophyly of Ambulacraria. BMC Evolutionary Biology, 2011, 11, 134.	3.2	19
332	deepBlockAlign: a tool for aligning RNA-seq profiles of read block patterns. Bioinformatics, 2012, 28, 17-24.	1.8	19
333	Circuit bases of strongly connected digraphs. Discussiones Mathematicae - Graph Theory, 2003, 23, 241.	0.2	19
334	Dynamics of autocatalytic reaction networks IV: Inhomogeneous replicator networks. BioSystems, 1991, 26, 1-19.	0.9	18
335	Statistics of cycles in large networks. Physical Review E, 2006, 73, 025101.	0.8	18
336	NcDNAlign: Plausible multiple alignments of non-protein-coding genomic sequences. Genomics, 2008, 92, 65-74.	1.3	18
337	Hox cluster duplication in the basal teleost Hiodon alosoides (Osteoglossomorpha). Theory in Biosciences, 2009, 128, 109-120.	0.6	18
338	Conservation and Losses of Non-Coding RNAs in Avian Genomes. PLoS ONE, 2015, 10, e0121797.	1.1	18
339	Keeping it complicated: Mitochondrial genome plasticity across diplonemids. Scientific Reports, 2017, 7, 14166.	1.6	18
340	Best match graphs. Journal of Mathematical Biology, 2019, 78, 2015-2057.	0.8	18
341	Evolution of the Long Non-coding RNAs MALAT1 and MENβ/ε. Lecture Notes in Computer Science, 2010, , 1-12.	1.0	18
342	Chromosomeâ€level <i>Thlaspi arvense</i> genome provides new tools for translational research and for a newly domesticated cash cover crop of the cooler climates. Plant Biotechnology Journal, 2022, 20, 944-963.	4.1	18

#	Article	IF	CITATIONS
343	Nature and evolution of early replicons. , 1999, , 1-24.		17
344	Three different premature stop codons lead to skipping of exon 7 in neurofibromatosis type I patients. Human Mutation, 2000, 16, 90-91.	1.1	17
345	Networks in molecular evolution. Complexity, 2002, 8, 34-42.	0.9	17
346	Phase transition and landscape statistics of the number partitioning problem. Physical Review E, 2003, 67, 056701.	0.8	17
347	U7 snRNAs: A Computational Survey. Genomics, Proteomics and Bioinformatics, 2007, 5, 187-195.	3.0	17
348	Customized strategies for discovering distant ncRNA homologs. Briefings in Functional Genomics & Proteomics, 2009, 8, 451-460.	3.8	17
349	Measuring Transcription Factor–Binding Site Turnover: A Maximum Likelihood Approach Using Phylogenies. Genome Biology and Evolution, 2009, 1, 85-98.	1.1	17
350	Some novel intron positions in conserved Drosophila genes are caused by intron sliding or tandem duplication. BMC Evolutionary Biology, 2010, 10, 156.	3.2	17
351	Tracing the evolution of the heterotrimeric G protein $\hat{l}\pm$ subunit in Metazoa. BMC Evolutionary Biology, 2018, 18, 51.	3.2	17
352	Comparison between transcriptomic responses to short-term stress exposures of a common Holarctic and endemic Lake Baikal amphipods. BMC Genomics, 2019, 20, 712.	1.2	17
353	Beyond the 3′UTR binding-microRNA-induced protein truncation via DNA binding. Oncotarget, 2018, 9, 32855-32867.	0.8	17
354	Generic Properties of Chemical Networks: Artificial Chemistry Based on Graph Rewriting. Lecture Notes in Computer Science, 2003, , 10-19.	1.0	16
355	Aggregation of Variables and System Decomposition: Applications to Fitness Landscape Analysis. Theory in Biosciences, 2004, 123, 33-68.	0.6	16
356	Evolving towards the hypercycle: A spatial model of molecular evolution. Physica D: Nonlinear Phenomena, 2006, 217, 134-141.	1.3	16
357	A Survey on Hypergraph Products. Mathematics in Computer Science, 2012, 6, 1-32.	0.2	16
358	ceRNAs in plants: computational approaches and associated challenges for target mimic research. Briefings in Bioinformatics, 2017, 19, 1273-1289.	3.2	16
359	flowEMMi: an automated model-based clustering tool for microbial cytometric data. BMC Bioinformatics, 2019, 20, 643.	1.2	16
360	Identification of RNA 3´ ends and termination sites in <i>Haloferax volcanii</i> . RNA Biology, 2020, 17, 663-676.	1.5	16

#	Article	IF	CITATIONS
361	Splicing conservation signals in plant long noncoding RNAs. Rna, 2020, 26, 784-793.	1.6	16
362	Immune networks modeled by replicator equations. Journal of Mathematical Biology, 1994, 33, 111-137.	0.8	15
363	Approximate graph products. European Journal of Combinatorics, 2009, 30, 1119-1133.	0.5	15
364	A Topological Approach to Chemical Organizations. Artificial Life, 2009, 15, 71-88.	1.0	15
365	Evolution of metabolic networks: a computational frame-work. Journal of Systems Chemistry, 2010, 1, 4.	1.7	15
366	Fast local fragment chaining using sum-of-pair gap costs. Algorithms for Molecular Biology, 2011, 6, 4.	0.3	15
367	Never Ending Analysis of a Century Old Evolutionary Debate: "Unringing―the Urmetazoon Bell. Frontiers in Ecology and Evolution, 2016, 4, .	1.1	15
368	Phylogenetic distribution of plant snoRNA families. BMC Genomics, 2016, 17, 969.	1.2	15
369	Similarity-Based Segmentation of Multi-Dimensional Signals. Scientific Reports, 2017, 7, 12355.	1.6	15
370	Distinct abdominal and gluteal adipose tissue transcriptome signatures are altered by exercise training in African women with obesity. Scientific Reports, 2020, 10, 10240.	1.6	15
371	Effects of lifestyle interventions on epigenetic signatures of liver fat: Central randomized controlled trial. Liver International, 2021, 41, 2101-2111.	1.9	15
372	Computational Prediction of MicroRNA Genes. Methods in Molecular Biology, 2014, 1097, 437-456.	0.4	15
373	The influence of mutation on autocatalytic reaction networks. Mathematical Biosciences, 1994, 122, 127-160.	0.9	14
374	Landscapes on spaces of trees. Applied Mathematics and Computation, 2002, 131, 439-459.	1.4	14
375	Funnels in energy landscapes. European Physical Journal B, 2008, 63, 387-391.	0.6	14
376	MicroRNA or Not MicroRNA?. Lecture Notes in Computer Science, 2011, , 1-9.	1.0	14
377	LocARNAscan: Incorporating thermodynamic stability in sequence and structure-based RNA homology search. Algorithms for Molecular Biology, 2013, 8, 14.	0.3	14
378	Atom mapping with constraint programming. Algorithms for Molecular Biology, 2014, 9, 23.	0.3	14

#	Article	IF	CITATIONS
379	The relativity of biological function. Theory in Biosciences, 2015, 134, 143-147.	0.6	14
380	The ancestor of modern Holozoa acquired the CCA-adding enzyme from Alphaproteobacteria by horizontal gene transfer. Nucleic Acids Research, 2015, 43, 6739-6746.	6.5	14
381	Spectral classes of regular, random, and empirical graphs. Linear Algebra and Its Applications, 2016, 489, 30-49.	0.4	14
382	Do genome size differences within Brachionus asplanchnoidis (Rotifera, Monogononta) cause reproductive barriers among geographic populations?. Hydrobiologia, 2017, 796, 59-75.	1.0	14
383	Detailed secondary structure models of invertebrate 7SK RNAs. RNA Biology, 2018, 15, 158-164.	1.5	14
384	Best match graphs and reconciliation of gene trees with species trees. Journal of Mathematical Biology, 2020, 80, 1459-1495.	0.8	14
385	Comprehensive benchmarking of software for mapping whole genome bisulfite data: from read alignment to DNA methylation analysis. Briefings in Bioinformatics, 2021, 22, .	3.2	14
386	Complementary replication. Mathematical Biosciences, 1991, 107, 83-109.	0.9	13
387	Metastable states in short-rangedp-spin glasses. Journal of Physics A, 1999, 32, 8793-8802.	1.6	13
388	New Chronological Frame for the Young Neolithic Baden Culture in Central Europe (4th Millennium) Tj ETQq0 0 () rgBT /Ον	erlock 10 Tf 5
389	Fractal geometry of spin-glass models. Journal of Physics A, 2002, 35, 1509-1516.	1.6	13
390	Shapes of tree representations of spin-glass landscapes. Journal of Physics A, 2003, 36, 3671-3681.	1.6	13
391	Visualization of Barrier Tree Sequences. IEEE Transactions on Visualization and Computer Graphics, 2006, 12, 781-788.	2.9	13
392	<i>Hox</i> clusters of the bichir (Actinopterygii, <i>Polypterus senegalus</i>) highlight unique patterns of sequence evolution in gnathostome phylogeny. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 2011, 316B, 451-464.	0.6	13
393	Mapping the RNA-Seq trash bin. RNA Biology, 2013, 10, 1204-1210.	1.5	13
394	An intermediate level of abstraction for computational systems chemistry. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2017, 375, 20160354.	1.6	13
395	The RNA workbench 2.0: next generation RNA data analysis. Nucleic Acids Research, 2019, 47, W511-W515.	6.5	13
396	Within-population genome size variation is mediated by multiple genomic elements that segregate independently during meiosis. Genome Biology and Evolution, 2019, 11, 3424-3435.	1.1	13

#	Article	IF	CITATIONS
397	Complete Characterization of Incorrect Orthology Assignments in Best Match Graphs. Journal of Mathematical Biology, 2021, 82, 20.	0.8	13
398	Homology Search with Fragmented Nucleic Acid Sequence Patterns. Lecture Notes in Computer Science, 2007, , 335-345.	1.0	13
399	Common Features in IncRNA Annotation and Classification: A Survey. Non-coding RNA, 2021, 7, 77.	1.3	13
400	Canonical approximation of fitness landscapes. , 1996, 2, 53-58.		12
401	Evolution of the vertebrate parahox clusters. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 2006, 306B, 481-487.	0.6	12
402	"Genes― Theory in Biosciences, 2008, 127, 215-221.	0.6	12
403	SynBlast: Assisting the analysis of conserved synteny information. BMC Bioinformatics, 2008, 9, 351.	1.2	12
404	Molecular Evolution of the Non-Coding Eosinophil Granule Ontogeny Transcript. Frontiers in Genetics, 2011, 2, 69.	1.1	12
405	Identification of purple sea urchin telomerase RNA using a next-generation sequencing based approach. Rna, 2013, 19, 852-860.	1.6	12
406	Bioinformatics of prokaryotic RNAs. RNA Biology, 2014, 11, 470-483.	1.5	12
407	Product Grammars for Alignment and Folding. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2015, 12, 507-519.	1.9	12
408	Toward a mechanistic explanation of phenotypic evolution: The need for a theory of theory integration. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 2018, 330, 5-14.	0.6	12
409	TERribly Difficult: Searching for Telomerase RNAs in Saccharomycetes. Genes, 2018, 9, 372.	1.0	12
410	Indication of ongoing amphipod speciation in Lake Baikal by genetic structures within endemic species. BMC Evolutionary Biology, 2019, 19, 138.	3.2	12
411	Gene expression profile of human T cells following a single stimulation of peripheral blood mononuclear cells with anti-CD3 antibodies. BMC Genomics, 2019, 20, 593.	1.2	12
412	SSS-test: a novel test for detecting positive selection on RNA secondary structure. BMC Bioinformatics, 2019, 20, 151.	1.2	12
413	RNApuzzler: efficient outerplanar drawing of RNA-secondary structures. Bioinformatics, 2019, 35, 1342-1349.	1.8	12
414	From pairs of most similar sequences to phylogenetic best matches. Algorithms for Molecular Biology, 2020, 15, 5.	0.3	12

#	Article	lF	CITATIONS
415	Developmentally Driven Changes in Adipogenesis in Different Fat Depots Are Related to Obesity. Frontiers in Endocrinology, 2020, $11,138$.	1.5	12
416	Multiomics reveal unique signatures of human epiploic adipose tissue related to systemic insulin resistance. Gut, 2022, 71, 2179-2193.	6.1	12
417	Class-Specific Prediction of ncRNAs. Methods in Molecular Biology, 2014, 1097, 199-213.	0.4	12
418	Linear operators on correlated landscapes. Journal De Physique, I, 1994, 4, 681-696.	1.2	12
419	Evolution of DNA Methylation Across Ecdysozoa. Journal of Molecular Evolution, 2022, 90, 56-72.	0.8	12
420	Approximate Scaling Properties of RNA Free Energy Landscapes. Journal of Theoretical Biology, 1996, 181, 299-310.	0.8	11
421	Simon?Ando decomposability and fitness landscapes. Theory in Biosciences, 2004, 123, 139-180.	0.6	11
422	Detection of RNA structures in porcine EST data and related mammals. BMC Genomics, 2007, 8, 316.	1.2	11
423	Visualization of Graph Products. IEEE Transactions on Visualization and Computer Graphics, 2010, 16, 1082-1089.	2.9	11
424	Chromatin computation: Epigenetic inheritance as a pattern reconstruction problem. Journal of Theoretical Biology, 2013, 336, 61-74.	0.8	11
425	Near intron pairs and the metazoan tree. Molecular Phylogenetics and Evolution, 2013, 66, 811-823.	1.2	11
426	Gene Phylogenies and Orthologous Groups. Methods in Molecular Biology, 2018, 1704, 1-28.	0.4	11
427	Split-inducing indels in phylogenomic analysis. Algorithms for Molecular Biology, 2018, 13, 12.	0.3	11
428	Genome analyses of a placozoan rickettsial endosymbiont show a combination of mutualistic and parasitic traits. Scientific Reports, 2019, 9, 17561.	1.6	11
429	Splicing Endonuclease Is an Important Player in rRNA and tRNA Maturation in Archaea. Frontiers in Microbiology, 2020, 11, 594838.	1.5	11
430	Master and servant: LINC00152 – a STAT3-induced long noncoding RNA regulates STAT3 in a positive feedback in human multiple myeloma. BMC Medical Genomics, 2020, 13, 22.	0.7	11
431	Different ways to play it cool: Transcriptomic analysis sheds light on different activity patterns of three amphipod species under longâ€ŧerm cold exposure. Molecular Ecology, 2021, 30, 5735-5751.	2.0	11
432	Permanence of sparse catalytic networks. Mathematical Biosciences, 1996, 131, 111-133.	0.9	10

#	Article	IF	Citations
433	The Footprint Sorting Problemâ€. Journal of Chemical Information and Computer Sciences, 2004, 44, 332-338.	2.8	10
434	DUPLICATED RNA GENES IN TELEOST FISH GENOMES. Journal of Bioinformatics and Computational Biology, 2008, 06, 1157-1175.	0.3	10
435	Local Algorithms for the Prime Factorization of Strong Product Graphs. Mathematics in Computer Science, 2009, 2, 653-682.	0.2	10
436	In Silico Evolution of Early Metabolism. Artificial Life, 2011, 17, 87-108.	1.0	10
437	The Cartesian product of hypergraphs. Journal of Graph Theory, 2012, 70, 180-196.	0.5	10
438	Algebraic Dynamic Programming over general data structures. BMC Bioinformatics, 2015, 16, S2.	1.2	10
439	<i>In silico</i> Support for Eschenmoser's Glyoxylate Scenario. Israel Journal of Chemistry, 2015, 55, 919-933.	1.0	10
440	Automated detection of ncRNAs in the draft genome sequence of a colonial tunicate: the carpet sea squirt Didemnum vexillum. BMC Genomics, 2016, 17, 691.	1.2	10
441	Tractable RNA–ligand interaction kinetics. BMC Bioinformatics, 2017, 18, 424.	1.2	10
442	The fungal snoRNAome. Rna, 2018, 24, 342-360.	1.6	10
443	Divergent evolution in the genomes of closely-related lacertids, Lacerta viridis and L. bilineata and implications for speciation. GigaScience, 2018, 8, .	3.3	10
444	Coordinate systems for supergenomes. Algorithms for Molecular Biology, 2018, 13, 15.	0.3	10
445	Studying language evolution in the age of big data. Journal of Language Evolution, 2018, 3, 94-129.	2.2	10
446	Reciprocal best match graphs. Journal of Mathematical Biology, 2020, 80, 865-953.	0.8	10
447	Alzheimer-related genes show accelerated evolution. Molecular Psychiatry, 2021, 26, 5790-5796.	4.1	10
448	Saddles and Barrier in Landscapes of Generalized Search Operators. Lecture Notes in Computer Science, 2007, , 194-212.	1.0	10
449	Geometry and Coarse-Grained Representations of Landscapes. Emergence, Complexity and Computation, 2014, , 153-176.	0.2	10
450	BioAutoML: automated feature engineering and metalearning to predict noncoding RNAs in bacteria. Briefings in Bioinformatics, 2022, 23, .	3.2	10

#	Article	IF	CITATIONS
451	Small autocatalytic reaction networksâ€"III. Monotone growth functions. Bulletin of Mathematical Biology, 1991, 53, 469-485.	0.9	9
452	Autocatalytic networks with intermediates I: Irreversible reactions. Mathematical Biosciences, 1997, 140, 33-74.	0.9	9
453	Autocatalytic replication in a CSTR and constant organization. Journal of Mathematical Biology, 1999, 38, 422-434.	0.8	9
454	Gene phylogenies and protein–protein interactions: possible artifacts resulting from shared protein interaction partners. Journal of Theoretical Biology, 2004, 231, 197-202.	0.8	9
455	Reconstruction of pedigrees in clonal plant populations. Theoretical Population Biology, 2010, 78, 109-117.	0.5	9
456	Protein-coding structured RNAs: A computational survey of conserved RNA secondary structures overlapping coding regions in drosophilids. Biochimie, 2011, 93, 2019-2023.	1.3	9
457	Evolution and Quantitative Comparison of Genome-Wide Protein Domain Distributions. Genes, 2011, 2, 912-924.	1.0	9
458	Evolution of RNA-Based Networks. Current Topics in Microbiology and Immunology, 2015, 392, 43-59.	0.7	9
459	Finding the K best synthesis plans. Journal of Cheminformatics, 2018, 10, 19.	2.8	9
460	Patterning the insect eye: From stochastic to deterministic mechanisms. PLoS Computational Biology, 2018, 14, e1006363.	1.5	9
461	Time-consistent reconciliation maps and forbidden time travel. Algorithms for Molecular Biology, 2018, 13, 2.	0.3	9
462	Selection Pressures on RNA Sequences and Structures. Evolutionary Bioinformatics, 2019, 15, 117693431987191.	0.6	9
463	50 Shades of Rule Composition. Lecture Notes in Computer Science, 2014, , 117-135.	1.0	9
464	Visual Network Analysis of Dynamic Metabolic Pathways. Lecture Notes in Computer Science, 2010, , 316-327.	1.0	9
465	A short note on undirected Fitch graphs. Art of Discrete and Applied Mathematics, 2018, 1, #1.08.	0.2	9
466	Dynamics of small autocatalytic reaction networks—l. bifurcations, permanence and exclusion. Bulletin of Mathematical Biology, 1990, 52, 485-508.	0.9	8
467	Random walks and orthogonal functions associated with highly symmetric graphs. Discrete Mathematics, 1995, 145, 229-237.	0.4	8
468	Local minima in the graph bipartitioning problem. Europhysics Letters, 1996, 34, 85-90.	0.7	8

#	Article	IF	Citations
469	The dynamics of locally adaptive parties under spatial voting. Journal of Economic Dynamics and Control, 1998, 23, 171-189.	0.9	8
470	A stochastic model for the evolution of transcription factor binding site abundance. Journal of Theoretical Biology, 2007, 247, 544-553.	0.8	8
471	A note on fundamental, non-fundamental, and robust cycle bases. Discrete Applied Mathematics, 2009, 157, 2432-2438.	0.5	8
472	TEMPERATURE-DEPENDENT STRUCTURAL VARIABILITY OF RNAs: SPLICED LEADER RNAs AND THEIR EVOLUTIONARY HISTORY. Journal of Bioinformatics and Computational Biology, 2010, 08, 1-17.	0.3	8
473	The Use and Abuse of -Omes. Methods in Molecular Biology, 2011, 719, 173-196.	0.4	8
474	Landscape Encodings Enhance Optimization. PLoS ONE, 2012, 7, e34780.	1.1	8
475	Symmetric circular matchings and RNA folding. Discrete Mathematics, 2012, 312, 100-112.	0.4	8
476	Design of Transcription Regulating Riboswitches. Methods in Enzymology, 2015, 550, 1-22.	0.4	8
477	Developmentally regulated expression and expression strategies of Drosophila snoRNAs. Insect Biochemistry and Molecular Biology, 2015, 61, 69-78.	1.2	8
478	Algebraic dynamic programming for multiple context-free grammars. Theoretical Computer Science, 2016, 639, 91-109.	0.5	8
479	Rare Splice Variants in Long Non-Coding RNAs. Non-coding RNA, 2017, 3, 23.	1.3	8
480	Comparative RNA Genomics. Methods in Molecular Biology, 2018, 1704, 363-400.	0.4	8
481	Complexity of modification problems for best match graphs. Theoretical Computer Science, 2021, 865, 63-84.	0.5	8
482	Indirect identification of horizontal gene transfer. Journal of Mathematical Biology, 2021, 83, 10.	0.8	8
483	PTEN regulates adipose progenitor cell growth, differentiation, and replicative aging. Journal of Biological Chemistry, 2021, 297, 100968.	1.6	8
484	Interchangeability of Relevant Cycles in Graphs. Electronic Journal of Combinatorics, 2000, 7, .	0.2	8
485	GLASSY STATES IN A SHAKEN SANDBOX. International Journal of Modeling, Simulation, and Scientific Computing, 2001, 04, 429-439.	0.9	7
486	Comparative Genomics, cis-Regulatory Elements, and Gene Duplication. Methods in Cell Biology, 2004, 77, 545-561.	0.5	7

#	Article	IF	CITATIONS
487	Unorthodox mRNA start site to extend the highly structured leader of retrotransposon Tto1 mRNA increases transposition rate. Rna, 2005, 11, 1181-1191.	1.6	7
488	Early Replicons: Origin and Evolution**Dedicated to Manfred Eigen, the pioneer of molecular evolution and intellectual father of quasispecies theory, on the occasion of his 80th birthday , 2008, , 1-41.		7
489	Combinatorial vector fields and the valley structure of fitness landscapes. Journal of Mathematical Biology, 2010, 61, 877-898.	0.8	7
490	Mitogenomics and metazoan evolution. Molecular Phylogenetics and Evolution, 2013, 69, 311-312.	1.2	7
491	Evolution of the unspliced transcriptome. BMC Evolutionary Biology, 2015, 15, 166.	3.2	7
492	U6 snRNA intron insertion occurred multiple times during fungi evolution. RNA Biology, 2016, 13, 119-127.	1.5	7
493	Towards a Consistent, Quantitative Evaluation of MicroRNA Evolution. Journal of Integrative Bioinformatics, $2017,14,.$	1.0	7
494	Partially local three-way alignments and the sequence signatures of mitochondrial genome rearrangements. Algorithms for Molecular Biology, 2017, 12, 22.	0.3	7
495	Temporal ordering of substitutions in RNA evolution: Uncovering the structural evolution of the Human Accelerated Region 1. Journal of Theoretical Biology, 2018, 438, 143-150.	0.8	7
496	Description of strongly heat-inducible heat shock protein 70 transcripts from Baikal endemic amphipods. Scientific Reports, 2019, 9, 8907.	1.6	7
497	Thermal reaction norms of key metabolic enzymes reflect divergent physiological and behavioral adaptations of closely related amphipod species. Scientific Reports, 2021, 11, 4562.	1.6	7
498	The Trouble with Long-Range Base Pairs in RNA Folding. Lecture Notes in Computer Science, 2013, , 1-11.	1.0	7
499	Chemical Graph Transformation with Stereo-Information. Lecture Notes in Computer Science, 2017, , 54-69.	1.0	7
500	RNA Folding Algorithms with G-Quadruplexes. Lecture Notes in Computer Science, 2012, , 49-60.	1.0	7
501	Indications for Potential Parent-of-Origin Effects within the FTO Gene. PLoS ONE, 2015, 10, e0119206.	1.1	7
502	RNA Secondary Structures with Limited Base Pair Span: Exact Backtracking and an Application. Genes, 2021, 12, 14.	1.0	7
503	EpiDiverse Toolkit: a pipeline suite for the analysis of bisulfite sequencing data in ecological plant epigenetics. NAR Genomics and Bioinformatics, 2021, 3, lqab106.	1.5	7
504	Structural and evolutionary analysis of the transcribed sequence of Boudicca, a Schistosoma mansoni retrotransposon. Gene, 2004, 329, 103-114.	1.0	6

#	Article	IF	Citations
505	RNA Secondary Structures., 0,, 439-489.		6
506	RNA Interactions. Advances in Experimental Medicine and Biology, 2011, 722, 20-38.	0.8	6
507	Hidden treasures in unspliced EST data. Theory in Biosciences, 2012, 131, 49-57.	0.6	6
508	Design specifications for cellular regulation. Theory in Biosciences, 2016, 135, 231-240.	0.6	6
509	Inferring phylogenetic trees from the knowledge of rare evolutionary events. Journal of Mathematical Biology, 2018, 76, 1623-1653.	0.8	6
510	Identification and characterization of novel conserved RNA structures in Drosophila. BMC Genomics, 2018, 19, 899.	1.2	6
511	Intronic tRNAs of mitochondrial origin regulate constitutive and alternative splicing. Genome Biology, 2020, 21, 299.	3.8	6
512	Beyond Plug and Pray: Context Sensitivity and <i>in silico</i> Design of Artificial Neomycin Riboswitches. RNA Biology, 2021, 18, 457-467.	1.5	6
513	44 Current Challenges in miRNomics. Methods in Molecular Biology, 2022, 2257, 423-438.	0.4	6
514	A note on quasi-robust cycle bases. Ars Mathematica Contemporanea, 2009, 2, 231-240.	0.3	6
515	Convex cycle bases. Ars Mathematica Contemporanea, 2014, 7, 123-140.	0.3	6
516	A prime factor theorem for a generalized direct product. Discussiones Mathematicae - Graph Theory, 2006, 26, 135.	0.2	6
517	From modular decomposition trees to rooted median graphs. Discrete Applied Mathematics, 2022, 310, 1-9.	0.5	6
518	PredicTF: prediction of bacterial transcription factors in complex microbial communities using deep learning. Environmental Microbiomes, 2022, 17, 7.	2.2	6
519	Process flow for classification and clustering of fruit fly gene expression patterns., 2008, 1, 721-724.		5
520	Polynomial algorithms for the Maximal Pairing Problem: efficient phylogenetic targeting on arbitrary trees. Algorithms for Molecular Biology, 2010, 5, 25.	0.3	5
521	25 Molecular morphology: Higher order characters derivable from sequence information. , 2014, , 549-562.		5
522	Optimizing RNA structures by sequence extensions using RNAcop. Nucleic Acids Research, 2015, 43, 8135-8145.	6. 5	5

#	Article	IF	Citations
523	The complete mitochondrial genome of <i>Lacerta bilineata</i> and comparison with its closely related congener <i>L. Viridis</i> Mitochondrial DNA Part A: DNA Mapping, Sequencing, and Analysis, 2017, 28, 116-118.	0.7	5
524	Noncoding RNA Transcripts during Differentiation of Induced Pluripotent Stem Cells into Hepatocytes. Stem Cells International, 2018, 2018, 1-15.	1.2	5
525	Phylogenetics beyond biology. Theory in Biosciences, 2018, 137, 133-143.	0.6	5
526	Nonprotein-Coding RNAs as Regulators of Development in Tunicates. Results and Problems in Cell Differentiation, 2018, 65, 197-225.	0.2	5
527	Big Data Competence Center ScaDS Dresden/Leipzig: Overview and selected research activities. Datenbank-Spektrum, 2019, 19, 5-16.	1.2	5
528	Automatic curation of large comparative animal MicroRNA datasets. Bioinformatics, 2019, 35, 4553-4559.	1.8	5
529	Average Fitness Differences on NK Landscapes. Theory in Biosciences, 2020, 139, 1-7.	0.6	5
530	Generalized Fitch graphs II: Sets of binary relations that are explained by edge-labeled trees. Discrete Applied Mathematics, 2020, 283, 495-511.	0.5	5
531	MCPIP1 ribonuclease can bind and cleave <i>AURKA</i> mRNA in <i>MYCN</i> -amplified neuroblastoma cells. RNA Biology, 2021, 18, 144-156.	1.5	5
532	Rugged and Elementary Landscapes. Natural Computing Series, 2014, , 41-61.	2.2	5
533	cyPhyRNA-seq: a genome-scale RNA-seq method to detect active self-cleaving ribozymes by capturing RNAs with $2\hat{E}^1$, $3\hat{E}^1$ <u>cy</u> clic <u>p</u> hosphates and $5\hat{E}^1$ <u>hy</u> droxyl ends. RNA Biology, 2021, 18, 818-831.	1.5	5
534	NEUTRAL NETWORKS OF INTERACTING RNA SECONDARY STRUCTURES. International Journal of Modeling, Simulation, and Scientific Computing, 2005, 08, 275-283.	0.9	4
535	xmlns:xocs="http://www.elsevier.com/xml/xocs/dtd" xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.elsevier.com/xml/ja/dtd" xmlns:ja="http://www.elsevier.com/xml/ja/dtd" xmlns:ja="http://www.elsevier.com/xml/ja/dtd" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd"	0.4	4
536	xmlns:sb="http://www.elsevier.com/xml/common/struct-bib/dtd" xmlns:ce="htt. Discrete Mathematics, 22 Computational methods for the analysis of mitochondrial genome rearrangements., 2014,, 515-530.		4
537	Assessing Greenness of Chemical Reactions and Synthesis Plans through Posetic Landscapes. ACS Sustainable Chemistry and Engineering, 2016, 4, 2191-2199.	3.2	4
538	Evolution of Fungal U3 snoRNAs: Structural Variation and Introns. Non-coding RNA, 2017, 3, 3.	1.3	4
539	Algebraic Dynamic Programming on Trees. Algorithms, 2017, 10, 135.	1.2	4
540	Partially Local Multi-way Alignments. Mathematics in Computer Science, 2018, 12, 207-234.	0.2	4

#	Article	IF	CITATIONS
541	A streamlined protocol for the detection of mRNA–sRNA interactions using AMT-crosslinking <i>in vitro</i> . BioTechniques, 2019, 67, 178-183.	0.8	4
542	Exploring Plant Sesquiterpene Diversity by Generating Chemical Networks. Processes, 2019, 7, 240.	1.3	4
543	Complexity of modification problems for reciprocal best match graphs. Theoretical Computer Science, 2020, 809, 384-393.	0.5	4
544	Unusual Occurrence of Two Bona-Fide CCA-Adding Enzymes in Dictyostelium discoideum. International Journal of Molecular Sciences, 2020, 21, 5210.	1.8	4
545	Proteomics reveals sex-specific heat shock response of Baikal amphipod Eulimnogammarus cyaneus. Science of the Total Environment, 2021, 763, 143008.	3.9	4
546	Ligand-dependent tRNA processing by a rationally designed RNase P riboswitch. Nucleic Acids Research, 2021, 49, 1784-1800.	6.5	4
547	A workflow to identify novel proteins based on the direct mapping of peptide-spectrum-matches to genomic locations. BMC Bioinformatics, 2021, 22, 277.	1.2	4
548	LazyB: fast and cheap genome assembly. Algorithms for Molecular Biology, 2021, 16, 8.	0.3	4
549	OrtSuite: from genomes to prediction of microbial interactions within targeted ecosystem processes. Life Science Alliance, 2021, 4, e202101167.	1.3	4
550	Dynamic Programming for Set Data Types. Lecture Notes in Computer Science, 2014, , 57-64.	1.0	4
551	Generalized Topologies: Hypergraphs, Chemical Reactions, and Biological Evolution., 2015,, 300-328.		4
552	Axiomatic characterization of transit functions of weak hierarchies. Art of Discrete and Applied Mathematics, 2019, 2, #P1.01.	0.2	4
553	Efficient Computation of Base-pairing Probabilities in Multi-strand RNA Folding. , 2020, , .		4
554	How to Multiply Dynamic Programming Algorithms. Lecture Notes in Computer Science, 2013, , 82-93.	1.0	4
555	In-Depth miRNA Profiling Of Germinal Center Derived B-Cell Lymphomas By Next Generation Sequencing: A Report From The German Icgc-Mmml-Seq Project. Blood, 2013, 122, 2500-2500.	0.6	4
556	Compatibility of partitions with trees, hierarchies, and split systems. Discrete Applied Mathematics, 2022, 314, 265-283.	0.5	4
557	Autocatalytic networks with translation. Bulletin of Mathematical Biology, 1996, 58, 877-905.	0.9	3
558	Autocatalytic networks with translation. Bulletin of Mathematical Biology, 1996, 58, 877-905.	0.9	3

#	Article	IF	CITATIONS
559	Living and Nonliving Matter. Science, 2004, 305, 41-44.	6.0	3
560	Addendum: topology and prediction of RNA pseudoknots. Bioinformatics, 2012, 28, 300-300.	1.8	3
561	Clustering Rfam 10.1: Clans, Families, and Classes. Genes, 2012, 3, 378-390.	1.0	3
562	Unusual Novel SnoRNA-Like RNAs in Drosophila melanogaster. Non-coding RNA, 2015, 1, 139-150.	1.3	3
563	Connectivity Spaces. Mathematics in Computer Science, 2015, 9, 409-436.	0.2	3
564	A simple data-adaptive probabilistic variant calling model. Algorithms for Molecular Biology, 2015, 10, 10.	0.3	3
565	Superbubbles revisited. Algorithms for Molecular Biology, 2018, 13, 16.	0.3	3
566	The Sierra Platinum Service for generating peak-calls for replicated ChIP-seq experiments. BMC Research Notes, 2018, 11, 512.	0.6	3
567	Exact-2-relation graphs. Discrete Applied Mathematics, 2020, 285, 212-226.	0.5	3
568	Best Match Graphs with Binary Trees. Lecture Notes in Computer Science, 2021, , 82-93.	1.0	3
569	FORMAN–RICCI CURVATURE FOR HYPERGRAPHS. International Journal of Modeling, Simulation, and Scientific Computing, 2021, 24, .	0.9	3
570	miRNAtureâ€"Computational Detection of microRNA Candidates. Genes, 2021, 12, 348.	1.0	3
571	Alignments of biomolecular contact maps. Interface Focus, 2021, 11, 20200066.	1.5	3
572	Ryūtŕ improved multi-sample transcript assembly for differential transcript expression analysis and more. Bioinformatics, 2021, 37, 4307-4313.	1.8	3
573	Compositional Properties of Alignments. Mathematics in Computer Science, 2021, 15, 609.	0.2	3
574	Cograph editing: Merging modules is equivalent to editing P_4s. Art of Discrete and Applied Mathematics, 2020, 3, #P2.01.	0.2	3
575	Synthetic Riboswitches for the Analysis of tRNA Processing by eukaryotic RNase P Enzymes. Rna, 2022, , rna.078814.121.	1.6	3
576	A simpler linear-time algorithm for the common refinement of rooted phylogenetic trees on a common leaf set. Algorithms for Molecular Biology, 2021, 16, 23.	0.3	3

#	Article	IF	CITATIONS
577	Cas1 and Fen1 Display Equivalent Functions During Archaeal DNA Repair. Frontiers in Microbiology, 2022, 13, 822304.	1.5	3
578	Visualization of Lattice-Based Protein Folding Simulations. , 0, , .		2
579	A STORY OF GROWING CONFUSION: GENES AND THEIR REGULATION. Biophysical Reviews and Letters, 2008, 03, 285-302.	0.9	2
580	On the Complexity of Reconstructing Chemical Reaction Networks. Mathematics in Computer Science, 2013, 7, 275-292.	0.2	2
581	Translation in Mammalian Mitochondria: Order and Disorder Linked to tRNAs and Aminoacyl-tRNA Synthetases. , 2013, , 55-83.		2
582	Unique square property, equitable partitions, and product-like graphs. Discrete Mathematics, 2014, 320, 92-103.	0.4	2
583	Simulation of gene family histories. BMC Bioinformatics, 2014, 15, .	1.2	2
584	Molecular Phylogenetics 2016. BioMed Research International, 2016, 2016, 1-2.	0.9	2
585	Automatic Inference of Graph Transformation Rules Using the Cyclic Nature of Chemical Reactions. Lecture Notes in Computer Science, 2016, , 206-222.	1.0	2
586	SMORE: Synteny Modulator of Repetitive Elements. Life, 2017, 7, 42.	1.1	2
587	Transcriptome-level effects of the model organic pollutant phenanthrene and its solvent acetone in three amphipod species. Comparative Biochemistry and Physiology Part D: Genomics and Proteomics, 2020, 33, 100630.	0.4	2
588	Convexity Deficit of Benzenoids. Croatica Chemica Acta, 2020, 92, 457-466.	0.1	2
589	Arc-Completion of 2-Colored Best Match Graphs to Binary-Explainable Best Match Graphs. Algorithms, 2021, 14, 110.	1.2	2
590	Heuristic algorithms for best match graph editing. Algorithms for Molecular Biology, 2021, 16, 19.	0.3	2
591	Advances in Bioinformatics and Computational Biology. Lecture Notes in Computer Science, 2010, , .	1.0	2
592	Atom Mapping with Constraint Programming. Lecture Notes in Computer Science, 2013, , 805-822.	1.0	2
593	Processed Small RNAs in Archaea and BHB Elements. Genomics and Computational Biology, 2015, 1, 18.	0.7	2
594	Efficient Laplacian spectral density computations for networks with arbitrary degree distributions. Network Science, 2021, 9, 312-327.	0.8	2

#	Article	IF	Citations
595	Computational RNomics: Genome-wide detection of structured non-coding RNAs and their evolutionary patterns. , 0, 2005, .		2
596	Evolution and Phylogeny of MicroRNAs â€" Protocols, Pitfalls, and Problems. Methods in Molecular Biology, 2022, 2257, 211-233.	0.4	2
597	Bi-alignments as Models of Incongruent Evolution of RNA Sequence and Secondary Structure. Lecture Notes in Computer Science, 2020, , 159-170.	1.0	2
598	Bi-alignments with affine gaps costs. Algorithms for Molecular Biology, 2022, 17, 10.	0.3	2
599	Complete edge-colored permutation graphs. Advances in Applied Mathematics, 2022, 139, 102377.	0.4	2
600	Mutation in autocatalytic reaction networks. Journal of Mathematical Biology, 1992, 30, 597.	0.8	1
601	Hamming chromatography. Molecular Diversity, 1996, 1, 187-192.	2.1	1
602	Evolution in Systems of Ligation-Based Replicators. Zeitschrift Fur Physikalische Chemie, 2002, 216, .	1.4	1
603	Editorial. Theory in Biosciences, 2004, 123, 1-2.	0.6	1
604	RNA Folding in silico. , 2005, , 177-190.		1
605	Regulatory Signals in Genomic Sequences. , 2007, , 189-216.		1
606	Modeling Conformational Flexibility and Evolution of Structure: RNA as an Example. Biological and Medical Physics Series, 2007, , 3-36.	0.3	1
607	Mutate now, die later. Evolutionary dynamics with delayed selection. Journal of Theoretical Biology, 2009, 260, 412-421.	0.8	1
608	Deletion analysis of the 3′ long terminal repeat sequence of plant retrotransposon Tto1 identifies 125 base pairs redundancy as sufficient for first strand transfer. Virology, 2011, 412, 75-82.	1.1	1
609	Genomic and Morphological Evidence Converge to Resolve the Enigma of Strepsiptera. Current Biology, 2013, 23, 1388.	1.8	1
610	23 RNA in phylogenetic reconstruction. , 2014, , 531-538.		1
611	Draft Genome Sequence of FT9, a Novel Bacillus cereus Strain Isolated from a Brazilian Thermal Spring. Genome Announcements, 2014, 2, .	0.8	1
612	Evolution of 3'UTR-associated RNAs. BMC Bioinformatics, 2015, 16, .	1.2	1

#	Article	IF	CITATIONS
613	Molecular Phylogenetics 2014. BioMed Research International, 2015, 2015, 1-2.	0.9	1
614	Associativity and Non-Associativity of Some Hypergraph Products. Mathematics in Computer Science, 2016, 10, 403-408.	0.2	1
615	Expansion of gene clusters, circular orders, and the shortest Hamiltonian path problem. Journal of Mathematical Biology, 2018, 77, 313-341.	0.8	1
616	Cover-Encodings of Fitness Landscapes. Bulletin of Mathematical Biology, 2018, 80, 2154-2176.	0.9	1
617	Direct Superbubble Detection. Algorithms, 2019, 12, 81.	1.2	1
618	Transit sets of -point crossover operators. AKCE International Journal of Graphs and Combinatorics, 2020, 17, 519-533.	0.4	1
619	Are spliced ncRNA host genes distinct classes of lncRNAs?. Theory in Biosciences, 2020, 139, 349-359.	0.6	1
620	A probabilistic version of Sankoff's maximum parsimony algorithm. Journal of Bioinformatics and Computational Biology, 2020, 18, 2050004.	0.3	1
621	Generic Context-Aware Group Contributions. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2022, 19, 429-442.	1.9	1
622	Changes of the tRNA Modification Pattern during the Development of Dictyostelium discoideum. Non-coding RNA, 2021, 7, 32.	1.3	1
623	Accelerated Evolution of Tissue-Specific Genes Mediates Divergence Amidst Gene Flow in European Green Lizards. Genome Biology and Evolution, 2021, 13, .	1.1	1
624	Evolutionary Genomics of Hox Gene Clusters. , 2007, , 68-90.		1
625	A STORY OF GROWING CONFUSION: GENES AND THEIR REGULATION. , 2008, , .		1
626	Axiomatic characterization of transit functions of hierarchies. Ars Mathematica Contemporanea, 2018, 14, 117-128.	0.3	1
627	Disturbance of phylogenetic layer-specific adaptation of human brain gene expression in Alzheimer's disease. Scientific Reports, 2021, 11, 20200.	1.6	1
628	Glassy States in a Shaken Sandbox. , 2003, , 141-151.		1
629	CelloS: A Multi-level Approach to Evolutionary Dynamics. Lecture Notes in Computer Science, 2005, , 500-509.	1.0	1
630	Visualization of Barrier Tree Sequences Revisited. Mathematics and Visualization, 2008, , 275-290.	0.4	1

#	Article	IF	CITATIONS
631	Automatic Classification of Embryonic Fruit Fly Gene Expression Patterns. Informatik Aktuell, 2009, , 415-419.	0.4	1
632	Distribution of Graph-Distances in Boltzmann Ensembles of RNA Secondary Structures. Lecture Notes in Computer Science, 2013, , 112-125.	1.0	1
633	A Common Framework for Linear and Cyclic Multiple Sequence Alignment Problems. Lecture Notes in Computer Science, 2014, , 135-147.	1.0	1
634	SOUND SYMBOLISM AND THE ORIGINS OF LANGUAGE. , 2014, , .		1
635	Oriented components and their separations. Applied General Topology, 2017, 18, 255.	0.1	1
636	Small integral membrane protein 10 like 1 downregulation enhances differentiation of adipose progenitor cells. Biochemical and Biophysical Research Communications, 2022, 604, 57-62.	1.0	1
637	RNA Design Principles for Riboswitches that Regulate RNase P-Mediated tRNA Processing. Methods in Molecular Biology, 2022, , 179-202.	0.4	1
638	Small autocatalytic reaction networksâ€"III. Monotone growth functions. Bulletin of Mathematical Biology, 1991, 53, 469-485.	0.9	0
639	Random structures and evolution of biopolymers. Zeitschrift Fur Elektrotechnik Und Elektrochemie, 1994, 98, 1128-1128.	0.9	0
640	MATH/CHEM/COMP 2004 Contributions. Theory in Biosciences, 2005, 123, 263-264.	0.6	0
641	Minimum path bases and relevant paths. Networks, 2005, 46, 119-123.	1.6	0
642	Towards theoretical formalisms. Theory in Biosciences, 2007, 126, 1-2.	0.6	0
643	HLA-DRB10401 and HLA-DRB10408 Are Strongly Associated with the Development of Antibodies against Interferon-Î ² Therapy in Multiple Sclerosis. American Journal of Human Genetics, 2008, 83, 541.	2.6	0
644	Discovering cis-regulatory modules by optimizing barbecues. Discrete Applied Mathematics, 2009, 157, 2458-2468.	0.5	0
645	A Visual Cross-Database Comparison of Metabolic Networks. Lecture Notes in Computer Science, 2012, , 678-687.	1.0	0
646	ncRNA-Agents: A Multiagent System for Non-coding RNA Annotation. Lecture Notes in Computer Science, 2013, , 136-147.	1.0	0
647	24 Intron positions and near intron pairs. , 2014, , 539-548.		0
648	Graph-distance distribution of the Boltzmann ensemble of RNA secondary structures. Algorithms for Molecular Biology, 2014, 9, 19.	0.3	0

#	Article	lF	CITATIONS
649	17 Deuterostome phylogeny – a molecular perspective. , 2014, , 413-424.		О
650	Spiders can be Recognized by Counting Their Legs. Mathematics in Computer Science, 2015, 9, 437-441.	0.2	0
651	Knowledge-based reasoning to annotate noncoding RNA using multi-agent system. Journal of Bioinformatics and Computational Biology, 2015, 13, 1550021.	0.3	O
652	The Grid Property and Product-Like Hypergraphs. Graphs and Combinatorics, 2015, 31, 757-770.	0.2	0
653	Read mapping. IT - Information Technology, 2016, 58, 119-125.	0.6	0
654	Multidimensional segmentation of heterogeneous data., 2017,,.		0
655	Clustering Improves the Goemans–Williamson Approximation for the Max-Cut Problem. Computation, 2020, 8, 75.	1.0	0
656	Street Name Data as a Reflection of Migration and Settlement History. Urban Science, 2020, 4, 74.	1.1	0
657	Superbubbles as an empirical characteristic of directed networks. Network Science, 2021, 9, 49-58.	0.8	0
658	Efficient Algorithms for Co-folding of Multiple RNAs. Communications in Computer and Information Science, 2021, , 193-214.	0.4	0
659	Cut Vertex Transit Functions of Hypergraphs. Lecture Notes in Computer Science, 2021, , 222-233.	1.0	0
660	Weighted Consensus Segmentations. Computation, 2021, 9, 17.	1.0	0
661	Machine Learning Studies of Non-coding RNAs based on Artificially Constructed Training Data. , 2021, , .		0
662	Discrete Models of Biopolymers. , 2004, , 187-221.		0
663	Computational Biology. , 2004, , 451-501.		0
664	Replicator Dynamics in Protocells. , 2008, , 317-336.		0
665	COMPUTATIONAL STUDIES OF NON-CODING RNAS – Session Introduction. , 2009, , 54-56.		0
666	Detection of Protein Domains in Eukaryotic Genome Sequences. Lecture Notes in Computer Science, 2010, , 71-74.	1.0	0

#	Article	IF	Citations
667	Minimum cycle bases of lexicographic products. Ars Mathematica Contemporanea, 2012, 5, 223-234.	0.3	0
668	Relations between graphs. Ars Mathematica Contemporanea, 2013, 6, 323-350.	0.3	0
669	Genome-Wide Identification of Non-coding RNAs in Komagatella pastoris str. GS115. Lecture Notes in Computer Science, 2014, , 115-122.	1.0	0
670	Generic Properties of the Sequence-Structure Relations of Biopolymers., 1998,, 149-156.		0
671	Identification of Blut, a Novel Long-Noncoding RNA Differentially Expressed in Burkitt Lymphoma. Blood, 2015, 126, 3875-3875.	0.6	0
672	A General Framework for Exact Partially Local Alignments. , 2019, , .		0
673	Computational Simulations for Cyclizations Catalyzed by Plant Monoterpene Synthases. Lecture Notes in Computer Science, 2020, , 247-258.	1.0	0
674	Anti-CD3 Stimulated T Cell Transcriptome Reveals Novel ncRNAs and Correlates with a Suppressive Profile. Lecture Notes in Computer Science, 2020, , 180-191.	1.0	0
675	Modeling RNA Folding., 2006,, 227-245.		0
676	Best Match Graphs With Binary Trees. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2023, 20, 1679-1690.	1.9	0
677	ExceS-A: an exon-centric split aligner. Journal of Integrative Bioinformatics, 2022, 19, .	1.0	0
678	The Genome of the "Sea Vomit―Didemnum vexillum. Life, 2021, 11, 1377.	1.1	0
679	Evolution of MicroRNAs. , 0, , 334-350.		0