## Angus C Wilson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4797131/publications.pdf Version: 2024-02-01



ANCUS C WUSON

| #  | Article                                                                                                                                                                                                                 | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | The VP16 accessory protein HCF is a family of polypeptides processed from a large precursor protein.<br>Cell, 1993, 74, 115-125.                                                                                        | 13.5 | 259       |
| 2  | Direct RNA sequencing on nanopore arrays redefines the transcriptional complexity of a viral pathogen. Nature Communications, 2019, 10, 754.                                                                            | 5.8  | 200       |
| 3  | Association of C-Terminal Ubiquitin Hydrolase BRCA1-Associated Protein 1 with Cell Cycle Regulator<br>Host Cell Factor 1. Molecular and Cellular Biology, 2009, 29, 2181-2192.                                          | 1.1  | 187       |
| 4  | Nature and Duration of Growth Factor Signaling through Receptor Tyrosine Kinases Regulates HSV-1<br>Latency in Neurons. Cell Host and Microbe, 2010, 8, 320-330.                                                        | 5.1  | 140       |
| 5  | Carboxy Terminus of Human Herpesvirus 8 Latency-Associated Nuclear Antigen Mediates Dimerization,<br>Transcriptional Repression, and Targeting to Nuclear Bodies. Journal of Virology, 2000, 74, 8532-8540.             | 1.5  | 135       |
| 6  | Transient Reversal of Episome Silencing Precedes VP16-Dependent Transcription during Reactivation of Latent HSV-1 in Neurons. PLoS Pathogens, 2012, 8, e1002540.                                                        | 2.1  | 133       |
| 7  | A cultured affair: HSV latency and reactivation in neurons. Trends in Microbiology, 2012, 20, 604-611.                                                                                                                  | 3.5  | 130       |
| 8  | Direct RNA sequencing reveals m6A modifications on adenovirus RNA are necessary for efficient splicing. Nature Communications, 2020, 11, 6016.                                                                          | 5.8  | 111       |
| 9  | Transcripts Encoding K12, v-FLIP, v-Cyclin, and the MicroRNA Cluster of Kaposi's Sarcoma-Associated<br>Herpesvirus Originate from a Common Promoter. Journal of Virology, 2005, 79, 14457-14464.                        | 1.5  | 104       |
| 10 | The Latency-Associated Nuclear Antigen Interacts with MeCP2 and Nucleosomes through Separate Domains. Journal of Virology, 2010, 84, 2318-2330.                                                                         | 1.5  | 76        |
| 11 | Control of viral latency in neurons by axonal mTOR signaling and the 4E-BP translation repressor.<br>Genes and Development, 2012, 26, 1527-1532.                                                                        | 2.7  | 72        |
| 12 | Targeting the m <sup>6</sup> A RNA modification pathway blocks SARS-CoV-2 and HCoV-OC43 replication. Genes and Development, 2021, 35, 1005-1019.                                                                        | 2.7  | 70        |
| 13 | Activation of Host Translational Control Pathways by a Viral Developmental Switch. PLoS Pathogens, 2009, 5, e1000334.                                                                                                   | 2.1  | 62        |
| 14 | Restarting Lytic Gene Transcription at the Onset of Herpes Simplex Virus Reactivation. Journal of<br>Virology, 2017, 91, .                                                                                              | 1.5  | 55        |
| 15 | Activation of the Kaposi's Sarcoma-Associated Herpesvirus Major Latency Locus by the Lytic Switch<br>Protein RTA (ORF50). Journal of Virology, 2005, 79, 8493-8505.                                                     | 1.5  | 54        |
| 16 | HCF-1 Functions as a Coactivator for the Zinc Finger Protein Krox20. Journal of Biological Chemistry, 2003, 278, 51116-51124.                                                                                           | 1.6  | 52        |
| 17 | Transcriptional Activation by the Kaposi's Sarcoma-Associated Herpesvirus Latency-Associated Nuclear<br>Antigen Is Facilitated by an N-Terminal Chromatin-Binding Motif. Journal of Virology, 2004, 78,<br>10074-10085. | 1.5  | 52        |
| 18 | Wide-Scale Use of Notch Signaling Factor CSL/RBP-Jκ in RTA-Mediated Activation of Kaposi's Sarcoma-Associated Herpesvirus Lytic Genes. Journal of Virology, 2010, 84, 1334-1347.                                        | 1.5  | 47        |

ANGUS C WILSON

| #  | Article                                                                                                                                                                                                                   | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | HCF-1 Amino- and Carboxy-Terminal Subunit Association through Two Separate Sets of Interaction<br>Modules: Involvement of Fibronectin Type 3 Repeats. Molecular and Cellular Biology, 2000, 20,<br>6721-6730.             | 1.1 | 45        |
| 20 | The gene encoding the VP16-accessory protein HCF (HCFC1) resides in human Xq28 and is highly expressed in fetal tissues and the adult kidney. Genomics, 1995, 25, 462-468.                                                | 1.3 | 44        |
| 21 | Immune Escape via a Transient Gene Expression Program Enables Productive Replication of a Latent<br>Pathogen. Cell Reports, 2017, 18, 1312-1323.                                                                          | 2.9 | 43        |
| 22 | Modeling HSV-1 Latency in Human Embryonic Stem Cell-Derived Neurons. Pathogens, 2017, 6, 24.                                                                                                                              | 1.2 | 42        |
| 23 | Herpes Simplex Virus Transactivator VP16 Discriminates between HCF-1 and a Novel Family Member,<br>HCF-2. Journal of Virology, 1999, 73, 3930-3940.                                                                       | 1.5 | 40        |
| 24 | An activation domain in the C-terminal subunit of HCF-1 is important for transactivation by VP16 and LZIP. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 13403-13408.        | 3.3 | 39        |
| 25 | A Primary Neuron Culture System for the Study of Herpes Simplex Virus Latency and Reactivation.<br>Journal of Visualized Experiments, 2012, , .                                                                           | 0.2 | 39        |
| 26 | Widespread remodeling of the m <sup>6</sup> A RNA-modification landscape by a viral regulator of RNA processing and export. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, . | 3.3 | 39        |
| 27 | Expression of Herpes Simplex Virus 1 MicroRNAs in Cell Culture Models of Quiescent and Latent<br>Infection. Journal of Virology, 2014, 88, 2337-2339.                                                                     | 1.5 | 35        |
| 28 | Going the Distance: Optimizing RNA-Seq Strategies for Transcriptomic Analysis of Complex Viral<br>Genomes. Journal of Virology, 2019, 93, .                                                                               | 1.5 | 34        |
| 29 | TOP2β-Dependent Nuclear DNA Damage Shapes Extracellular Growth Factor Responses via Dynamic AKT<br>Phosphorylation to Control Virus Latency. Molecular Cell, 2019, 74, 466-480.e4.                                        | 4.5 | 31        |
| 30 | Mutations in Host Cell Factor 1 Separate Its Role in Cell Proliferation from Recruitment of VP16 and LZIP. Molecular and Cellular Biology, 2000, 20, 919-928.                                                             | 1.1 | 29        |
| 31 | DRUMMER—rapid detection of RNA modifications through comparative nanopore sequencing.<br>Bioinformatics, 2022, 38, 3113-3115.                                                                                             | 1.8 | 26        |
| 32 | Kaposi's Sarcoma-Associated Herpesvirus Latency-Associated Nuclear Antigen Induces a Strong Bend<br>on Binding to Terminal Repeat DNA. Journal of Virology, 2005, 79, 13829-13836.                                        | 1.5 | 25        |
| 33 | Interaction of HCF-1 with a Cellular Nuclear Export Factor. Journal of Biological Chemistry, 2002, 277, 44292-44299.                                                                                                      | 1.6 | 21        |
| 34 | Cooperation between Viral Interferon Regulatory Factor 4 and RTA To Activate a Subset of Kaposi's<br>Sarcoma-Associated Herpesvirus Lytic Promoters. Journal of Virology, 2012, 86, 1021-1033.                            | 1.5 | 21        |
| 35 | Singleâ€cell transcriptomics identifies Gadd45b as a regulator of herpesvirusâ€reactivating neurons.<br>EMBO Reports, 2022, 23, e53543.                                                                                   | 2.0 | 16        |
| 36 | Viral Ubiquitin Ligase Stimulates Selective Host MicroRNA Expression by Targeting ZEB Transcriptional Repressors. Viruses, 2017, 9, 210.                                                                                  | 1.5 | 14        |

ANGUS C WILSON

| #  | Article                                                                                                                                                             | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Molecular cloning of Drosophila HCF reveals proteolytic processing and self-association of the encoded protein. Journal of Cellular Physiology, 2003, 194, 117-126. | 2.0 | 13        |
| 38 | DLK-Dependent Biphasic Reactivation of Herpes Simplex Virus Latency Established in the Absence of<br>Antivirals. Journal of Virology, 2022, 96, .                   | 1.5 | 12        |
| 39 | Using Direct RNA Nanopore Sequencing to Deconvolute Viral Transcriptomes. Current Protocols in<br>Microbiology, 2020, 57, e99.                                      | 6.5 | 11        |
| 40 | DNA replication facilitates the action of transcriptional enhancers in transient expression assays.<br>Nucleic Acids Research, 1993, 21, 4296-4304.                 | 6.5 | 9         |
| 41 | Setting the Stage for S Phase. Molecular Cell, 2007, 27, 176-177.                                                                                                   | 4.5 | 8         |
| 42 | Using Homogeneous Primary Neuron Cultures to Study Fundamental Aspects of HSV-1 Latency and Reactivation. Methods in Molecular Biology, 2014, 1144, 167-179.        | 0.4 | 8         |
| 43 | Impact of Cultured Neuron Models on α-Herpesvirus Latency Research. Viruses, 2022, 14, 1209.                                                                        | 1.5 | 8         |
| 44 | Shared ancestry of herpes simplex virus 1 strain Patton with recent clinical isolates from Asia and with strain KOS63. Virology, 2017, 512, 124-131.                | 1.1 | 5         |
| 45 | Evaluation of Extrachromosomal Gene Copy Number of Transiently Transfected Cell Lines. , 1991, 7, 397-404.                                                          |     | 4         |
| 46 | Using Primary SCG Neuron Cultures to Study Molecular Determinants of HSV-1 Latency and Reactivation. Methods in Molecular Biology, 2020, 2060, 263-277.             | 0.4 | 2         |
| 47 | Control of animal virus replication by RNA adenosine methylation. Advances in Virus Research, 2022, , .                                                             | 0.9 | 0         |