
Shuang-Xia Zhao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4796903/publications.pdf Version: 2024-02-01

SHUANC-XIA 7HAO

#	Article	IF	CITATIONS
1	A genome-wide association study identifies two new risk loci for Graves' disease. Nature Genetics, 2011, 43, 897-901.	21.4	243
2	Robust evidence for five new Graves' disease risk loci from a staged genome-wide association analysis. Human Molecular Genetics, 2013, 22, 3347-3362.	2.9	80
3	The genetic characteristics of congenital hypothyroidism in China by comprehensive screening of 21 candidate genes. European Journal of Endocrinology, 2018, 178, 623-633.	3.7	77
4	Association of the CTLA4 Gene with Graves' Disease in the Chinese Han Population. PLoS ONE, 2010, 5, e9821.	2.5	42
5	Refined association of TSH receptor susceptibility locus to Graves' disease in the Chinese Han population. European Journal of Endocrinology, 2014, 170, 109-119.	3.7	26
6	Identification of BACH2 as a susceptibility gene for Graves' disease in the Chinese Han population based on a three-stage genome-wide association study. Human Genetics, 2014, 133, 661-671.	3.8	24
7	A Refined Study of FCRL Genes from a Genome-Wide Association Study for Graves' Disease. PLoS ONE, 2013, 8, e57758.	2.5	20
8	Mutation screening of the TSHR gene in 220 Chinese patients with congenital hypothyroidism. Clinica Chimica Acta, 2019, 497, 147-152.	1.1	20
9	Aromatase deficiency: a novel compound heterozygous mutation identified in a Chinese girl with severe phenotype and obvious maternal virilization. Molecular and Cellular Endocrinology, 2016, 433, 66-74.	3.2	19
10	Genetic Study in a Large Cohort Supported Different Pathogenesis of Graves' Disease and Hashimoto's Hypothyroidism. Journal of Clinical Endocrinology and Metabolism, 2020, 105, e2600-e2608.	3.6	15
11	Upregulation of GBP1 in thyroid primordium is required for developmental thyroid morphogenesis. Genetics in Medicine, 2021, 23, 1944-1951.	2.4	13
12	ITM2A Expands Evidence for Genetic and Environmental Interaction in Graves Disease Pathogenesis. Journal of Clinical Endocrinology and Metabolism, 2017, 102, 652-660.	3.6	11
13	The TPO mutation screening and genotype-phenotype analysis in 230 Chinese patients with congenital hypothyroidism. Molecular and Cellular Endocrinology, 2020, 506, 110761.	3.2	11
14	Identification of three novel SRD5A2 mutations in Chinese patients with 5α-reductase 2 deficiency. Asian Journal of Andrology, 2019, 21, 577.	1.6	9
15	A dense mapping study of six European AITD susceptibility regions in a large Chinese Han Cohort of Graves' disease. Clinical Endocrinology, 2018, 89, 840-848.	2.4	7
16	Molecular and clinical genetics of the transcription factor GLIS3 in Chinese congenital hypothyroidism. Molecular and Cellular Endocrinology, 2021, 528, 111223.	3.2	5
17	The mutation screening in candidate genes related to thyroid dysgenesis by targeted nextâ€generation sequencing panel in the Chinese congenital hypothyroidism. Clinical Endocrinology, 2022, 96, 617-626.	2.4	5
18	The effect of radioiodine treatment on the characteristics of TRAb in Graves' disease. BMC Endocrine Disorders, 2021, 21, 238.	2.2	5

SHUANG-XIA ZHAO

#	Article	IF	CITATIONS
19	Genetic Manipulation on Zebrafish <i>duox</i> Recapitulate the Clinical Manifestations of Congenital Hypothyroidism. Endocrinology, 2021, 162, .	2.8	4
20	A Weighted Genetic Risk Score Using Known Susceptibility Variants to Predict Graves Disease Risk. Journal of Clinical Endocrinology and Metabolism, 2019, 104, 2121-2130.	3.6	3
21	Candidate gene associations reveal sexâ€specific Graves' disease risk alleles among Chinese Han populations. Molecular Genetics & Genomic Medicine, 2020, 8, e1249.	1.2	3
22	Correlation of <scp>DUOX2</scp> residual enzymatic activity with phenotype in congenital hypothyroidism caused by biallelic <scp><i>DUOX2</i></scp> defects. Clinical Genetics, 2021, 100, 713-721.	2.0	3
23	The expression of mimecan in adrenal tissue plays a role in an organism's responses to stress. Aging, 2021, 13, 13087-13107.	3.1	2
24	A fiveâ€gene panel refines differential diagnosis of thyroid nodules. Journal of Clinical Laboratory Analysis, 2021, 35, e23920.	2.1	2
25	Detection of BRAF V600E in Fine-Needle Aspiration Samples of Thyroid Nodules by Droplet Digital PCR. International Journal of Endocrinology, 2022, 2022, 1-8.	1.5	2
26	Tpo knockout in zebrafish partially recapitulates clinical manifestations of congenital hypothyroidism and reveals the involvement of TH in proper development of glucose homeostasis. General and Comparative Endocrinology, 2022, 323-324, 114033.	1.8	2