Yong Hyun Kim

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4796813/publications.pdf

Version: 2024-02-01

63 2,430 18 49
papers citations h-index g-index

64 64 64 3906
all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Highly Conductive PEDOT:PSS Electrode with Optimized Solvent and Thermal Postâ€Treatment for ITOâ€Free Organic Solar Cells. Advanced Functional Materials, 2011, 21, 1076-1081.	14.9	1,218
2	Nano-particle based scattering layers for optical efficiency enhancement of organic light-emitting diodes and organic solar cells. Journal of Applied Physics, 2013, 113, .	2.5	147
3	Achieving High Efficiency and Improved Stability in ITOâ€Free Transparent Organic Lightâ€Emitting Diodes with Conductive Polymer Electrodes. Advanced Functional Materials, 2013, 23, 3763-3769.	14.9	123
4	Semi-transparent small molecule organic solar cells with laminated free-standing carbon nanotube top electrodes. Solar Energy Materials and Solar Cells, 2012, 96, 244-250.	6.2	100
5	We Want Our Photons Back: Simple Nanostructures for White Organic Lightâ€Emitting Diode Outcoupling. Advanced Functional Materials, 2014, 24, 2553-2559.	14.9	67
6	Rising advancements in the application of PEDOT:PSS as a prosperous transparent and flexible electrode material for solution-processed organic electronics. Journal of Information Display, 2020, 21, 71-91.	4.0	46
7	Highly Enhanced Light-Outcoupling Efficiency in ITO-Free Organic Light-Emitting Diodes Using Surface Nanostructure Embedded High-Refractive Index Polymers. ACS Applied Materials & Diverfaces, 2018, 10, 985-991.	8.0	42
8	Improved efficiency and lifetime in small molecule organic solar cells with optimized conductive polymer electrodes. Applied Physics Letters, 2011, 99, .	3.3	39
9	Color-stable, ITO-free white organic light-emitting diodes with enhanced efficiency using solution-processed transparent electrodes and optical outcoupling layers. Organic Electronics, 2014, 15, 1028-1034.	2.6	35
10	Effect of trap states on the electrical doping of organic semiconductors. Organic Electronics, 2014, 15, 16-21.	2.6	30
11	Transparent Organic Lightâ€Emitting Diodes: Advances, Prospects, and Challenges. Advanced Optical Materials, 2021, 9, 2002040.	7.3	30
12	Efficient ITO-free organic light-emitting diodes comprising PEDOT:PSS transparent electrodes optimized with 2-ethoxyethanol and post treatment. Organic Electronics, 2017, 42, 348-354.	2.6	29
13	Ultratransparent Polymer/Semitransparent Silver Grid Hybrid Electrodes for Smallâ€Molecule Organic Solar Cells. Advanced Energy Materials, 2015, 5, 1401822.	19.5	26
14	Highly Conductive PEDOT:PSS Films with 1,3â€Dimethylâ€2â€Imidazolidinone as Transparent Electrodes for Organic Lightâ€Emitting Diodes. Macromolecular Rapid Communications, 2016, 37, 1427-1433.	3.9	24
15	Enhanced electrical properties of PEDOT:PSS films using solvent treatment and its application to ITO-free organic light-emitting diodes. Journal of Luminescence, 2017, 187, 221-226.	3.1	23
16	Enhanced outcoupling in down-conversion white organic light-emitting diodes using imprinted microlens array films with breath figure patterns. Science and Technology of Advanced Materials, 2019, 20, 35-41.	6.1	23
17	Enhanced light-outcoupling in organic light-emitting diodes through a coated scattering layer based on porous polymer films. Organic Electronics, 2017, 47, 117-125.	2.6	22
18	Generating semi-metallic conductivity in polymers by laser-driven nanostructural reorganization. Materials Horizons, 2019, 6, 2143-2151.	12.2	21

#	Article	IF	CITATIONS
19	High performance electrochromic devices based on WO3TiO2 nanoparticles synthesized by flame spray pyrolysis. Optical Materials, 2019, 89, 559-562.	3.6	19
20	Fine control of optical scattering characteristics of porous polymer light-extraction layer for organic light-emitting diodes. Organic Electronics, 2019, 67, 79-88.	2.6	19
21	Surface-functionalized silver nanowires on chitosan biopolymers for highly robust and stretchable transparent conducting films. Materials Research Letters, 2019, 7, 124-130.	8.7	18
22	Multifunctional Stretchable Organic–Inorganic Hybrid Electronics with Transparent Conductive Silver Nanowire/Biopolymer Hybrid Films. Advanced Optical Materials, 2021, 9, 2002041.	7.3	18
23	Down-conversion light outcoupling films using imprinted microlens arrays for white organic light-emitting diodes. Dyes and Pigments, 2017, 136, 92-96.	3.7	17
24	Solution-Processed Semitransparent Inverted Organic Solar Cells from a Transparent Conductive Polymer Electrode. ECS Journal of Solid State Science and Technology, 2019, 8, Q32-Q37.	1.8	17
25	Collecting the Electrons on nâ€Doped Fullerene C ₆₀ Transparent Conductors for Allâ€Vacuumâ€Deposited Smallâ€Molecule Organic Solar Cells. Advanced Energy Materials, 2013, 3, 1551-1556.	19.5	16
26	Fractional structured molybdenum oxide catalyst as counter electrodes of all-solid-state fiber dye-sensitized solar cells. Journal of Colloid and Interface Science, 2021, 584, 520-527.	9.4	16
27	Simultaneously enhanced optical, electrical, and mechanical properties of highly stretchable transparent silver nanowire electrodes using organic surface modifier. Science and Technology of Advanced Materials, 2019, 20, 116-123.	6.1	15
28	Mitigating the Undesirable Chemical Reaction between Organic Molecules for Highly Efficient Flexible Organic Photovoltaics. Advanced Science, 2021, 8, 2100865.	11.2	15
29	Transparent conductive hybrid thin-films based on copper-mesh/conductive polymer for ITO-Free organic light-emitting diodes. Organic Electronics, 2019, 73, 13-17.	2.6	14
30	Highly efficient solution-processed blue organic light-emitting diodes based on thermally activated delayed fluorescence emitters with spiroacridine donor. Journal of Industrial and Engineering Chemistry, 2019, 78, 265-270.	5.8	14
31	High performance ITO-free white organic light-emitting diodes using highly conductive PEDOT:PSS transparent electrodes. Synthetic Metals, 2018, 242, 99-102.	3.9	13
32	Enhanced flexible optoelectronic devices by controlling the wettability of an organic bifacial interlayer. Communications Materials, 2021, 2, .	6.9	13
33	Silica sodium carbonate: the most efficient catalyst for the one-pot synthesis of indeno[1,2-b]quinoline and spiro[chromene-4,3′-indoline]-3-carbonitriles under solvent-free condition. Monatshefte FĂ⅓r Chemie, 2015, 146, 673-682.	1.8	12
34	Curvature effects of electron-donating polymers on the device performance of non-fullerene organic solar cells. Journal of Power Sources, 2021, 482, 229045.	7.8	12
35	Effect of Laser-Induced Direct Micropatterning on Polymer Optoelectronic Devices. ACS Applied Materials & Samp; Interfaces, 2019, 11, 47143-47152.	8.0	10
36	Straight-forward control of the degree of micro-cavity effects in organic light-emitting diodes based on a thin striped metal layer. Organic Electronics, 2013, 14, 2444-2450.	2.6	9

#	Article	IF	Citations
37	Conductive PEDOT:PSS on surface-functionalized chitosan biopolymers for stretchable skin-like electronics. Organic Electronics, 2021, 94, 106165.	2.6	9
38	Highly stretchable, robust, and conductive lab-synthesized PEDOT:PSS conductive polymer/hydroxyethyl cellulose films for on-skin health-monitoring devices. Organic Electronics, 2022, 105, 106499.	2.6	9
39	Efficient solution processed hybrid white organic light-emitting diodes based on a blue thermally activated delayed fluorescence emitter. Thin Solid Films, 2020, 695, 137753.	1.8	8
40	Analysis of a commercial-scale photovoltaics system performance and economic feasibility. Journal of Renewable and Sustainable Energy, $2017, 9, .$	2.0	7
41	Improved light outcoupling efficiency in organic light-emitting diodes with nanoparticle-embedded charge transport layers. Organic Electronics, 2018, 54, 204-208.	2.6	7
42	Enhancement of spectral stability and outcoupling efficiency in organic light-emitting diodes with breath figure patterned microlens array films. Optical Materials, 2019, 96, 109262.	3.6	6
43	Enhancement of Light Extraction from Organic Light-Emitting Diodes by SiO ₂ Nanoparticle-Embedded Phase Separated PAA/PI Polymer Blends. Molecular Crystals and Liquid Crystals, 2019, 686, 55-62.	0.9	6
44	Dye-doped poly(3,4-Ethylenedioxythiophene)-Poly(Styrenesulfonate) electrodes for the application in organic light-emitting diodes. Thin Solid Films, 2020, 707, 138078.	1.8	6
45	Enhanced Light Outcoupling in Organic Light-Emitting Diodes Using Phase Separated Polymer Films. Electronic Materials Letters, 2020, 16, 363-368.	2.2	6
46	Efficient tandem organic light-emitting diode with fluorinated hexaazatrinaphthylene charge generation layer. Journal of Information Display, 2022, 23, 259-266.	4.0	6
47	The role of cation and anion dopant incorporated into a ZnO electron transporting layer for polymer bulk heterojunction solar cells. RSC Advances, 2019, 9, 37714-37723.	3.6	5
48	Cathode interfacial engineering using stearic-acid-mediated polyethylenimine ethoxylated for high-performance solution-processed organic light-emitting diodes. Chemical Engineering Journal, 2022, 427, 130890.	12.7	5
49	Multiple functionalities of highly conductive and flexible photo- and thermal-responsive colorimetric cellulose films. Materials Research Letters, 2022, 10, 36-44.	8.7	5
50	Highly stretchable and robust transparent conductive polymer composites for multifunctional healthcare monitoring. Science and Technology of Advanced Materials, 2022, 23, 332-340.	6.1	5
51	Outcoupling-enhanced organic light-emitting diodes using simple phase-separated polymer films. Optik, 2019, 192, 162944.	2.9	4
52	Solution-processed colored electrodes for ITO-free blue phosphorescent organic light-emitting diodes. Journal of Information Display, 2021, 22, 21-30.	4.0	4
53	Highly stretchable and mechanically robust silver nanowires on surface-functionalized wavy elastomers for wearable healthcare electronics. Organic Electronics, 2022, 108, 106584.	2.6	4
54	Fabrication of the dispersed hollow polymer scattering layer for enhancing the light out-coupling of organic light-emitting diodes. Molecular Crystals and Liquid Crystals, 2018, 663, 182-189.	0.9	3

#	Article	IF	Citations
55	Formation of nanopore and nanopillar patterned polymer films from mixed PAA-PI solutions by phase separation method. Molecular Crystals and Liquid Crystals, 2019, 679, 80-86.	0.9	3
56	Effect of the Hole Injection Layer Conductivity on the Performance of Polymer Light-Emitting Diodes. Electronic Materials Letters, 2021, 17, 331-339.	2.2	3
57	Transistors: Aerosol Jet Printed, Sub-2 V Complementary Circuits Constructed fromP- andN-Type Electrolyte Gated Transistors (Adv. Mater. 41/2014). Advanced Materials, 2014, 26, 7131-7131.	21.0	2
58	High-refractive-index polymers of poly (carbazole phenoxy-based polyurethane) for a refractive index matching film in organic light-emitting diodes. Molecular Crystals and Liquid Crystals, 2017, 659, 147-153.	0.9	1
59	Paper No P16: Efficient ITO-Free Organic Light-Emitting Diodes Based on Highly Conductive Polymer Electrodes. Digest of Technical Papers SID International Symposium, 2015, 46, 83-83.	0.3	0
60	Pâ€181: Highly Efficient OLED Panels Based on Coated Porous Polymer Film as the Lightâ€Extraction Layer. Digest of Technical Papers SID International Symposium, 2017, 48, 1953-1956.	0.3	0
61	Preparation of various morphological films at nanoscale by phase separation method. Molecular Crystals and Liquid Crystals, 2020, 705, 127-134.	0.9	0
62	Light Outcoupling Using Oxide Nanostructures for Tandem White Organic Light-Emitting Diodes on Polymeric Anodes. Electronic Materials Letters, 0, , 1.	2.2	0
63	Lithium Nickel Manganese Oxide-Carbon Composite Nanoparticles Synthesized By a Flame Spray Pyrolysis Process. ECS Meeting Abstracts, 2019, , .	0.0	0