Amirul Al-Ashraf Abdullah

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4796056/publications.pdf

Version: 2024-02-01

120 papers

2,100 citations

257357 24 h-index 330025

g-index

124 all docs

124 docs citations

times ranked

124

1975 citing authors

#	Article	IF	CITATIONS
1	Cyanobacteria: Photoautotrophic Microbial Factories for the Sustainable Synthesis of Industrial Products. BioMed Research International, 2015, 2015, 1-9.	0.9	116
2	Silver(I) complexes of mono- and bidentate N-heterocyclic carbene ligands: Synthesis, crystal structures, and inÂvitro antibacterial and anticancer studies. European Journal of Medicinal Chemistry, 2015, 90, 82-92.	2.6	107
3	A Review on Revolutionary Natural Biopolymer-Based Aerogels for Antibacterial Delivery. Antibiotics, 2020, 9, 648.	1.5	71
4	Biosynthesis of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) copolymer by Cupriavidus sp. USMAA1020 isolated from Lake Kulim, Malaysia. Bioresource Technology, 2008, 99, 4903-4909.	4.8	69
5	Insights into the Role of Biopolymer Aerogel Scaffolds in Tissue Engineering and Regenerative Medicine. Polymers, 2021, 13, 1612.	2.0	55
6	Sterically tuned Ag(i)- and Pd(ii)-N-heterocyclic carbene complexes of imidazol-2-ylidenes: synthesis, crystal structures, and in vitro antibacterial and anticancer studies. Metallomics, 2013, 5, 760.	1.0	53
7	Enhanced production of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) copolymer with manipulated variables and its properties. Journal of Industrial Microbiology and Biotechnology, 2009, 36, 547-556.	1.4	51
8	A high throughput Nile red fluorescence method for rapid quantification of intracellular bacterial polyhydroxyalkanoates. Biotechnology and Bioprocess Engineering, 2013, 18, 472-478.	1.4	50
9	Purification and characterization of α-amylase fromAspergillus flavus. Folia Microbiologica, 1994, 39, 392-398.	1.1	48
10	Simultaneous dual syringe electrospinning system using benign solvent to fabricate nanofibrous P(3HB-co-4HB)/collagen peptides construct as potential leave-on wound dressing. Materials Science and Engineering C, 2016, 66, 147-155.	3.8	44
11	Biosynthesis of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) and characterisation of its blend with oil palm empty fruit bunch fibers. Bioresource Technology, 2011, 102, 3626-3628.	4.8	39
12	High PHA density fed-batch cultivation strategies for 4HB-rich P(3HB-co-4HB) copolymer production by transformant Cupriavidus malaysiensis USMAA1020. International Journal of Biological Macromolecules, 2019, 125, 1024-1032.	3.6	36
13	Recent Advances in the Biosynthesis of Polyhydroxyalkanoates from Lignocellulosic Feedstocks. Life, 2021, 11, 807.	1.1	36
14	The influence of copolymer ratio and drug loading level on the biocompatibility of P(3HB-co-4HB) synthesized by Cupriavidus sp. (USMAA2-4). Biochemical Engineering Journal, 2008, 38, 314-318.	1.8	32
15	Purification and properties of two forms of glucoamylase fromAspergillus niger. Folia Microbiologica, 1996, 41, 165-174.	1.1	30
16	Synthesis, crystal structures, characterization and biological studies of nitrile-functionalized silver(I) N-heterocyclic carbene complexes. Inorganica Chimica Acta, 2015, 433, 35-44.	1.2	30
17	Synthesis, structures and antibacterial studies of non-functionalized and nitrile-functionalized bis-benzimidazolium salts and respective dinuclear silver(I)-N-heterocyclic carbene complexes. Polyhedron, 2016, 117, 628-636.	1.0	29
18	Silver(I)â€ <i>N</i> à€heterocyclic carbene complexes of bisâ€imidazolâ€2â€ylidenes having different aromaticâ€spacers: synthesis, crystal structure, and <i>in vitro</i> antimicrobial and anticancer studies. Applied Organometallic Chemistry, 2013, 27, 465-473.	1.7	28

#	Article	IF	CITATIONS
19	Pilot scale production of poly(3-hydroxybutyrate- co -4-hydroxybutyrate) biopolymers with high molecular weight and elastomeric properties. Journal of Bioscience and Bioengineering, 2017, 124, 76-83.	1.1	27
20	Production of copolymer poly(3-hydroxybutyrate-co-4-hydroxybutyrate) through a one-step cultivation process. World Journal of Microbiology and Biotechnology, 2008, 24, 2403-2409.	1.7	26
21	Increased recovery and improved purity of PHA from recombinant <i>Cupriavidus necator</i> Bioengineered, 2013, 4, 115-118.	1.4	26
22	Biomacromolecule immobilization: grafting of fish-scale collagen peptides onto aminolyzed $P(3HB-\langle i\rangle co\langle i\rangle -4HB)$ scaffolds as a potential wound dressing. Biomedical Materials (Bristol), 2016, 11, 055009.	1.7	26
23	Effect of different recovery strategies of P(3HB-co-3HHx) copolymer from Cupriavidus necator recombinant harboring the PHA synthase of Chromobacterium sp. USM2. Separation and Purification Technology, 2013, 102, 111-117.	3.9	25
24	Extracellular Polyhydroxyalkanoate Depolymerase by <i>Acidovorax</i> sp. DP5. Enzyme Research, 2015, 2015, 1-8.	1.8	25
25	Enhanced Recovery and Purification of P(3HB-co-3HHx) from Recombinant Cupriavidus necator Using Alkaline Digestion Method. Applied Biochemistry and Biotechnology, 2012, 167, 524-535.	1.4	24
26	Green nanobiocomposite: reinforcement effect of montmorillonite clays on physical and biological advancement of various polyhydroxyalkanoates. Polymer Bulletin, 2013, 70, 755-771.	1.7	24
27	Yellowâ€pigmented <i>Cupriavidus</i> sp., a novel bacterium capable of utilizing glycerine pitch for the sustainable production of P(<scp>3HB</scp> â€ <i>co</i> â€ <scp>4HB</scp>). Journal of Chemical Technology and Biotechnology, 2013, 88, 1030-1038.	1.6	24
28	Microbial-based synthesis of highly elastomeric biodegradable poly(3-hydroxybutyrate- co) Tj ETQq0 0 0 rgBT /Ov	verlock 10 3.6	Tf 50 387 Td 24
29	Synthesis of biodegradable polyesters by Gram negative bacterium isolated from Malaysian environment. World Journal of Microbiology and Biotechnology, 2008, 24, 1327-1332.	1.7	23
30	Biosynthesis and Characterization of Poly (3-hydroxybutyrate-co-3-hydroxyvalerate-co-4-hydroxybutyrate) Terpolymer with Various Monomer Compositions by Cupriavidus sp. USMAA2-4. Applied Biochemistry and Biotechnology, 2011, 164, 867-877.	1.4	23
31	Transformation of Biowaste for Medical Applications: Incorporation of Biologically Derived Silver Nanoparticles as Antimicrobial Coating. Antibiotics, 2021, 10, 229.	1.5	23
32	Pronounced synergistic influence of mixed substrate cultivation on single step copolymer P(3HB-co-4HB) biosynthesis with a wide range of 4HB monomer composition. Journal of Chemical Technology and Biotechnology, 2014, 89, 1023-1029.	1.6	21
33	Synthesis of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) with high 4HB composition and PHA content using 1,4-butanediol and 1,6-hexanediol for medical application. Journal of Polymer Research, 2017, 24, 1.	1.2	21
34	Improved production of poly(3-hydroxybutyrate-co-4-hydroxbutyrate) copolymer using a combination of 1,4-butanediol and \hat{l}^3 -butyrolactone. World Journal of Microbiology and Biotechnology, 2010, 26, 743-746.	1.7	20
35	Environmental Degradation of Microbial Polyhydroxyalkanoates and Oil Palm-Based Composites. Applied Biochemistry and Biotechnology, 2012, 167, 314-326.	1.4	20
36	Cellulase production by free and immobilized Aspergillus terreus. World Journal of Microbiology and Biotechnology, 2010, 26, 79-84.	1.7	19

#	Article	IF	CITATIONS
37	Preparation and Characterization of Polyhydroxyalkanoates Macroporous Scaffold Through Enzyme-Mediated Modifications. Applied Biochemistry and Biotechnology, 2013, 170, 690-709.	1.4	19
38	Identification of polyunsaturated fatty acid and diterpenoid biosynthesis pathways from draft genome of Aureispira sp. CCB-QB1. Marine Genomics, 2015, 19, 39-44.	0.4	19
39	Dataset on controlled production of polyhydroxyalkanoate-based microbead using double emulsion solvent evaporation technique. Data in Brief, 2019, 23, 103675.	0.5	19
40	Bioconversion of novel and renewable agro-industry by-products into a biodegradable poly(3-hydroxybutyrate) by marine Bacillus megaterium UMTKB-1 strain. Biotechnologia, 2017, 2, 141-151.	0.3	19
41	Factors influencing the release of Mitragyna speciosa crude extracts from biodegradable P(3HB-co-4HB). International Journal of Pharmaceutics, 2008, 361, 1-6.	2.6	17
42	Influence of Feeding and Controlled Dissolved Oxygen Level on the Production of Poly(3-Hydroxybutyrate-co-3-Hydroxyvalerate) Copolymer by Cupriavidus sp. USMAA2-4 and Its Characterization. Applied Biochemistry and Biotechnology, 2015, 176, 1315-1334.	1.4	17
43	Efficient Polyhydroxyalkanoate Recovery from RecombinantCupriavidus necatorby Using Low Concentration of NaOH. Environmental Engineering Science, 2012, 29, 783-789.	0.8	16
44	Studies on the Microbial Synthesis and Characterization of Polyhydroxyalkanoates Containing 4-Hydroxyvalerate Using Î ³ -Valerolactone. Applied Biochemistry and Biotechnology, 2013, 170, 1194-1215.	1.4	16
45	New non-functionalized and nitrile-functionalized benzimidazolium salts and their silver(I) complexes: Synthesis, crystal structures and antibacterial studies. Polyhedron, 2016, 109, 208-217.	1.0	16
46	Synthesis of high 4-hydroxybutyrate copolymer by Cupriavidus sp. transformants using one-stage cultivation and mixed precursor substrates strategy. Enzyme and Microbial Technology, 2017, 98, 1-8.	1.6	16
47	Designing Novel Interfaces via Surface Functionalization of Short-Chain-Length Polyhydroxyalkanoates. Advances in Polymer Technology, 2019, 2019, 1-15.	0.8	16
48	Elucidating the Surface Functionality of Biomimetic RGD Peptides Immobilized on Nano-P(3HB-co-4HB) for H9c2 Myoblast Cell Proliferation. Frontiers in Bioengineering and Biotechnology, 2020, 8, 567693.	2.0	16
49	Functional Properties of Antimicrobial Neem Leaves Extract Based Macroalgae Biofilms for Potential Use as Active Dry Packaging Applications. Polymers, 2021, 13, 1664.	2.0	16
50	Biosynthetic enhancement of single-stage Poly(3-hydroxybutyrate- <i>co</i> -4-hydroxybutyrate) production by manipulating the substrate mixtures. Journal of Industrial Microbiology and Biotechnology, 2015, 42, 1291-1297.	1.4	15
51	Docetaxel-Loaded Poly(3HB-co-4HB) Biodegradable Nanoparticles: Impact of Copolymer Composition. Nanomaterials, 2020, 10, 2123.	1.9	15
52	Bioconversion of Glycerine Pitch into a Novel Yellow-Pigmented P(3HB-co-4HB) Copolymer: Synergistic Effect of Ammonium Acetate and Polymer Characteristics. Applied Biochemistry and Biotechnology, 2014, 172, 891-909.	1.4	14
53	Designing of Collagen Based Poly(3-hydroxybutyrate- <i>co</i> -4-hydroxybutyrate) Scaffolds for Tissue Engineering. International Journal of Polymer Science, 2015, 2015, 1-10.	1.2	14
54	Heterologous expression of Cupriavidus sp. USMAA2-4 PHA synthase gene in PHBâ^'4 mutant for the production of poly(3-hydroxybutyrate) and its copolymers. World Journal of Microbiology and Biotechnology, 2010, 26, 1595-1603.	1.7	13

#	Article	IF	CITATIONS
55	Biosynthesis of Poly(3-hydroxybutyrate-co-3-hydroxyvalerate-co-4-hydroxybutyrate) terpolymer by Cupriavidus sp. USMAA2-4 through two-step cultivation process. World Journal of Microbiology and Biotechnology, 2011, 27, 2287-2295.	1.7	13
56	Regulating the molar fraction of 4-hydroxybutyrate in Poly(3-hydroxybutyrate-co-4-hydroxybutyrate) by biological fermentation and enzymatic degradation. World Journal of Microbiology and Biotechnology, 2011, 27, 2455-2459.	1.7	13
57	Synthesis of P(<scp>3HB</scp> â€ <i>co</i> â€ <scp>4HB</scp>) copolymer with targetâ€specific <scp>4HB</scp> molar fractions using combinations of carbon substrates. Journal of Chemical Technology and Biotechnology, 2014, 89, 407-418.	1.6	13
58	Different feeding strategy for the production of biosurfactant from Pseudomonas aeruginosa USM AR2 in modified bioreactor. Biotechnology and Bioprocess Engineering, 2009, 14, 763-768.	1.4	12
59	Tailoring the surface architecture of poly(3â€hydroxybutyrateâ€ <i>co</i> â€4â€hydroxybutyrate) scaffolds. Journal of Applied Polymer Science, 2012, 124, 2777-2788.	1.3	12
60	Fabrication of poly(3-hydroxybutyrate-co-4-hydroxybutyrate)/chitosan blend material: synergistic effects on physical, chemical, thermal and biological properties. Polymer Bulletin, 2013, 70, 1937-1957.	1.7	12
61	Synthesis of poly(3â€hydroxybutyrateâ€ <i>co</i> â€4â€hydroxybutyrate)/chitosan/silver nanocomposite material with enhanced antimicrobial activity. Biotechnology Progress, 2014, 30, 1469-1479.	1.3	12
62	Biosorption of a dye and heavy metals using dead cells of filamentous bacterium, Aureispira sp. CCB-QB1. International Journal of Environmental Science and Technology, 2021, 18, 1627-1636.	1.8	12
63	Surface-Modified Highly Biocompatible Bacterial-poly(3-hydroxybutyrate-co-4-hydroxybutyrate): A Review on the Promising Next-Generation Biomaterial. Polymers, 2021, 13, 51.	2.0	12
64	Isolation of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) producer from Malaysian environment using \hat{I}^3 -butyrolactone as carbon source. World Journal of Microbiology and Biotechnology, 2009, 25, 1199-1206.	1.7	11
65	Synthesis and Characterization of Polyols from Refined Cooking Oil for Polyurethane Foam Formation. Frontiers in Forests and Global Change, 2012, 31, 19-38.	0.6	11
66	Complete Genome Sequences of Three <i>Cupriavidus</i> Strains Isolated from Various Malaysian Environments. Genome Announcements, 2017, 5, .	0.8	11
67	Mangrovimonas xylaniphaga sp. nov. isolated from estuarine mangrove sediment of Matang Mangrove Forest, Malaysia. Archives of Microbiology, 2017, 199, 63-67.	1.0	11
68	Complete genome sequence of Microbulbifer sp. CCB-MM1, a halophile isolated from Matang Mangrove Forest, Malaysia. Standards in Genomic Sciences, 2017, 12, 36.	1.5	11
69	Production of high molecular weight poly(3-hydroxybutyrate-co-4-hydroxybutyrate) copolymer by Cupriavidus malaysiensis USMAA1020 utilising substrate with longer carbon chain. International Journal of Biological Macromolecules, 2018, 116, 217-223.	3.6	11
70	Synthesis, Structural Analysis and Antibacterial Studies of Bis- and Open Chain Tetra-N-Heterocyclic Carbene Dinuclear Silver(I) Complexes. Journal of Molecular Structure, 2021, 1236, 130301.	1.8	11
71	Rhamnolipid produced by <i>Pseudomonas aeruginosa</i> USM-AR2 facilitates crude oil distillation. Journal of General and Applied Microbiology, 2012, 58, 153-161.	0.4	10
72	Identification and Characterization of the Yellow Pigment Synthesized by Cupriavidus sp. USMAHM13. Applied Biochemistry and Biotechnology, 2014, 174, 461-470.	1.4	10

#	Article	IF	CITATIONS
73	Fabrication and characterization of P(3HB-co-4HB)/gelatine biomimetic nanofibrous scaffold for tissue engineering application. Journal of Polymer Research, 2019, 26, 1.	1.2	10
74	New class of non-symmetrical homo-dibenzimidazolium salts and their dinuclear Silver(I) di-NHC complexes. Journal of Organometallic Chemistry, 2019, 899, 120914.	0.8	10
75	Purification and characterization of new bio-plastic degrading enzyme from Burkholderia cepacia DP1. Protein Expression and Purification, 2019, 155, 35-42.	0.6	10
76	P(3HB- <i>co</i> -4HB) as high value polyhydroxyalkanoate: its development over recent decades and current advances. Critical Reviews in Biotechnology, 2021, 41, 474-490.	5.1	10
77	Dinuclear silver(I)- and gold(I)-N-heterocyclic carbene complexes of N-alkyl substituted bis-benzimidazol-2-ylidenes with aliphatic spacer: Synthesis, characterizations and antibacterial studies. Journal of Molecular Structure, 2021, 1246, 131187.	1.8	10
78	A review on biorefining of palm oil and sugar cane agro-industrial residues by bacteria into commercially viable bioplastics and biosurfactants. Fuel, 2022, 321, 124039.	3.4	10
79	Improvement of the production of poly(3â€hydroxybutyrateâ€ <i>co</i> â€hydroxybutyrateâ€ <i>co</i> â€hydroxybutyrate) terpolyester by manipulating the culture condition. Journal of Chemical Technology and Biotechnology, 2012, 87, 1607-1614.	1.6	9
80	Empirical modeling development for integrated process optimization of poly(3â€hydrxybutyrateâ€∢i>coàâ€hydroxyvalerate) production. Journal of Applied Polymer Science, 2012, 125, 2155-2162.	1.3	9
81	Evaluation of unrefined glycerine pitch as an efficient renewable carbon resource for the biosynthesis of novel yellow-pigmented P(3HB-co-4HB) copolymer towards green technology. Biotechnology and Bioprocess Engineering, 2013, 18, 1250-1257.	1.4	9
82	Agarolytic bacterium <i>Persicobacter </i> sp. CCB-QB2 exhibited a diauxic growth involving galactose utilization pathway. MicrobiologyOpen, 2017, 6, e00405.	1.2	9
83	Enhanced degradation of polyhydroxyalkanoates (PHAs) by newly isolated Burkholderia cepacia DP1 with high depolymerase activity. 3 Biotech, 2017, 7, 75.	1.1	9
84	A fed-batch strategy to produce high poly(3-hydroxybutyrate) terpolymer yield with enhanced mechanical properties in bioreactor. Bioprocess and Biosystems Engineering, 2017, 40, 1643-1656.	1.7	9
85	Mononuclear silver(I)- <i>N</i> -heterocyclic carbene complexes with benzimidazole-2-ylidene ligands: synthesis, crystal structure analyses and comparative antibacterial studies. Journal of Coordination Chemistry, 2020, 73, 2698-2717.	0.8	9
86	Elucidation of Antimicrobial Silver Sulfadiazine (SSD) Blend/Poly(3-Hydroxybutyrate-co-4-Hydroxybutyrate) Immobilised with Collagen Peptide as Potential Biomaterial. Polymers, 2020, 12, 2979.	2.0	8
87	Preparation, characterization and biodegradation of blend films of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) with natural biopolymers. Polymer Bulletin, 2021, 78, 3973-3993.	1.7	8
88	The Vibrio-predatory filamentous bacteria effectively removed acute hepatopancreatic necrosis disease (AHPND) causative Vibrio parahaemolyticus in vitro. Aquaculture Reports, 2021, 21, 100910.	0.7	8
89	Synthesis of a palladium(II) complex of a N-heterocylic carbene via transmetalation: crystal structure and antibacterial studies. Transition Metal Chemistry, 2016, 41, 775-781.	0.7	7
90	Exploring the Potential of 1-Pentanol and Oleic Acid for Optimizing the Production of Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) Copolymer by Cupriavidus sp. USMAA1020. Arabian Journal for Science and Engineering, 2017, 42, 2313-2320.	1.7	6

#	Article	IF	CITATIONS
91	A Marine Actinomycete Rescues Caenorhabditis elegans from Pseudomonas aeruginosa Infection through Restitution of Lysozyme 7. Frontiers in Microbiology, 2017, 8, 2267.	1.5	6
92	The effect of short alkane bridges in stability of bisbenzimidazole-2-ylidene silver(I) complexes: synthesis, crystal structure and antibacterial activity. Journal of Coordination Chemistry, 2019, 72, 894-907.	0.8	6
93	Biotransformation of oleochemical industry byâ€products to polyhydroxyalkanoate bioplastic using microbial fermentation: A review. Environmental Quality Management, 2022, 31, 31-46.	1.0	6
94	Optimizing the biosynthesis of renewable polyhydroxyalkanoate copolymer containing 3-hydroxyvalerate by Massilia haematophila using statistical modeling. Biotechnologia, 2019, 100, 359-371.	0.3	6
95	En route to economical ecoâ€friendly solvent system in enhancing sustainable recovery of poly(3â€hydroxybutyrateâ€ <i>co</i> â€4â€hydroxybutyrate) copolymer. Engineering in Life Sciences, 2017, 17, 1050-1059.	2.0	5
96	Cupriavidus malaysiensis sp. nov., a novel poly(3-hydroxybutyrate-co-4-hydroxybutyrate) accumulating bacterium isolated from the Malaysian environment. Antonie Van Leeuwenhoek, 2018, 111, 361-372.	0.7	5
97	Complete genome sequence of the novel agarolytic Catenovulum-like strain CCB-QB4. Marine Genomics, 2019, 43, 50-53.	0.4	5
98	Data on the effect of electrospinning parameters on the morphology of the nanofibrous poly(3-hydroxybutyrate-co-4-hydroxybutyrate) scaffolds. Data in Brief, 2020, 28, 104777.	0.5	5
99	Aerobic Degradation of Volatile Fatty Acids by Bacterial Strain Isolated from Rivers and Cow Farm in Malaysia. Journal of Bioremediation & Biodegradation, 2010, 01, .	0.5	5
100	A Critical Review on the Economically Feasible and Sustainable Poly(3-Hydroxybutyrate-co-3-hydroxyvalerate) Production from Alkyl Alcohols. Polymers, 2022, 14, 670.	2.0	5
101	Productivity increment of biodegradable and biorenewable copolymer containing 3â€hydroxyvalerate monomer initiated by alcohols as precursor substrates. Journal of Chemical Technology and Biotechnology, 2013, 88, 1364-1370.	1.6	4
102	Enhanced production of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) copolymer and antimicrobial yellow pigmentation from Cupriavidus sp. USMAHM13 with antibiofilm capability. Preparative Biochemistry and Biotechnology, 2017, 47, 388-396.	1.0	4
103	Metagenomic data on bacterial diversity profiling of high-microbial-abundance tropical marine sponges Aaptos aaptos and Xestospongia muta from waters off terengganu, South China Sea. Data in Brief, 2020, 31, 105971.	0.5	4
104	Genetic incorporation of oil-utilizing ability in Cupriavidus malaysiensis USMAA2-4 for sustainable polyhydroxyalkanoates production from palm olein and 1-pentanol. Journal of Biotechnology, 2021, 337, 71-79.	1.9	4
105	Bioprospecting and Molecular Identification of Used Transformer Oil-Degrading Bacteria for Bioplastics Production. Microorganisms, 2022, 10, 583.	1.6	4
106	The Effect of Different Peroxide on LDPE Foam Properties in the Presence of Polyfunctional Monomers. Frontiers in Forests and Global Change, 2012, 31, 145-164.	0.6	3
107	Combination of 4-Hydroxybutyrate Carbon Precursors as Substrate for Simultaneous Production of P(3HB-co-4HB) and Yellow Pigment by Cupriavidus sp. USMAHM13. Arabian Journal for Science and Engineering, 2017, 42, 2303-2311.	1.7	2
108	Draft Genome Sequence of Halophilic <i>Hahella</i> sp. Strain CCB-MM4, Isolated from Matang Mangrove Forest in Perak, Malaysia. Genome Announcements, 2017, 5, .	0.8	2

#	Article	IF	CITATIONS
109	Data on partial polyhydroxyalkanoate synthase genes (phaC) mined from Aaptos aaptos marine sponge-associated bacteria metagenome. Data in Brief, 2018, 16, 75-80.	0.5	2
110	Preliminary study on serum immunoglobulin G responses following intramuscular inoculation of adjuvanted polyhydroxyalkanoate microparticles with Pasteurella multocida vaccine in white rats. Biologicals, 2021, 71, 51-54.	0.5	2
111	Surface Characterization and Physiochemical Evaluation of P(3HB-co-4HB)-Collagen Peptide Scaffolds with Silver Sulfadiazine as Antimicrobial Agent for Potential Infection-Resistance Biomaterial. Polymers, 2021, 13, 2454.	2.0	2
112	Fabrication and Degradation of Electrospun Polyhydroxyalkanoate Film. Journal of Siberian Federal University - Biology, 2015, 8, 236-253.	0.2	2
113	PCR assembly of synthetic human erythropoietin gene. Electronic Journal of Biotechnology, 2009, 12, .	1.2	1
114	Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) copolymer synthesis by using 1-pentanol and oleic acid: Process optimization and polymer characterization. Journal of Polymer Research, 2021, 28, 1.	1.2	1
115	Surface Modification of Sponge-like Porous Poly(3-hydroxybutyrate-co-4-hydroxybutyrate)/Gelatine Blend Scaffolds for Potential Biomedical Applications. Polymers, 2022, 14, 1710.	2.0	1
116	Microbial Production of Polyhydroxyalkanoates for Agricultural and Aquacultural Applications. Microbiology Monographs, 2015, , 129-164.	0.3	0
117	Photoautotrophic Polyhydroxyalkanoate Production in Cyanobacteria., 2017, , .		O
118	Draft Genome Sequence of the Halophilic Pararhodobacter-Like Strain CCB-MM2, Which Has Polyhydroxyalkanoate-Synthesizing Potential. Microbiology Resource Announcements, 2019, 8, .	0.3	0
119	Open Chain Tetrabenzimidazolium Salts as Ligand Precursors for Silver(I)- <i>N</i> - Heterocyclic Carbene Complexes: Synthesis, Crystal Structure and Antibacterial Studies. Materials Science Forum, 0, 1061, 217-226.	0.3	O
120	Enhanced production of polyhydroxyalkanoate with manipulable and reproducible 3-hydroxyvalerate fraction by high alcohol tolerant Cupriavidus malaysiensis USMAA2-4 transformant. Bioprocess and Biosystems Engineering, 0, , .	1.7	0