Dennis Lovelock

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/479600/publications.pdf

Version: 2024-02-01

80 papers 3,682

30 h-index 59 g-index

88 all docs 88 docs citations

88 times ranked 3347 citing authors

#	Article	IF	CITATIONS
1	Exposure to Acute Stress Induces Brain Interleukin- \hat{l}^2 Protein in the Rat. Journal of Neuroscience, 1998, 18, 2239-2246.	1.7	445
2	A users guide to HPA axis research. Physiology and Behavior, 2017, 178, 43-65.	1.0	260
3	Prior Stressor Exposure Sensitizes LPS-Induced Cytokine Production. Brain, Behavior, and Immunity, 2002, 16, 461-476.	2.0	233
4	The Impact of the Nonpeptide Corticotropin-Releasing Hormone Antagonist Antalarmin on Behavioral and Endocrine Responses to Stress**This research was supported by NIMH Grant MH-50479 and the Undergraduate Research Opportunities Program at the University of Colorado at Boulder Endocrinology, 1999, 140, 79-86.	1.4	225
5	The involvement of norepinephrine and microglia in hypothalamic and splenic IL- $1\hat{l}^2$ responses to stress. Journal of Neuroimmunology, 2006, 173, 87-95.	1.1	158
6	Stress-induced increases in hypothalamic IL-1: a systematic analysis of multiple stressor paradigms. Brain Research Bulletin, 2005, 64, 541-556.	1.4	124
7	Gene expression changes in the hypothalamus provide evidence for regionally-selective changes in IL-1 and microglial markers after acute stress. Brain, Behavior, and Immunity, 2009, 23, 958-968.	2.0	115
8	From models to mechanisms: Odorant communication as a key determinant of social behavior in rodents during illness-associated states. Neuroscience and Biobehavioral Reviews, 2011, 35, 1916-1928.	2.9	108
9	The inflamed axis: The interaction between stress, hormones, and the expression of inflammatory-related genes within key structures comprising the hypothalamic–pituitary–adrenal axis. Physiology and Behavior, 2014, 124, 77-91.	1.0	105
10	Prior stressor exposure primes the HPA axis. Psychoneuroendocrinology, 2002, 27, 353-365.	1.3	102
11	Sociality and sickness: Have cytokines evolved to serve social functions beyond times of pathogen exposure?. Brain, Behavior, and Immunity, 2014, 37, 15-20.	2.0	96
12	Exposure to forced swim stress does not alter central production of IL-1. Brain Research, 2003, 972, 53-63.	1.1	87
13	Intoxication―and Withdrawalâ€Dependent Expression of Central and Peripheral Cytokines Following Initial Ethanol Exposure. Alcoholism: Clinical and Experimental Research, 2014, 38, 2186-2198.	1.4	74
14	Male adolescent rats display blunted cytokine responses in the CNS after acute ethanol or lipopolysaccharide exposure. Physiology and Behavior, 2015, 148, 131-144.	1.0	72
15	Behavioral responses during the forced swim test are not affected by anti-inflammatory agents or acute illness induced by lipopolysaccharide. Behavioural Brain Research, 2005, 160, 125-134.	1.2	70
16	Neuroimmune mechanisms of stress: sex differences, developmental plasticity, and implications for pharmacotherapy of stress-related disease. Stress, 2015, 18, 367-380.	0.8	70
17	Pharmacology of a Novel Central Nervous System–Penetrant P2X7 Antagonist JNJ-42253432. Journal of Pharmacology and Experimental Therapeutics, 2014, 351, 628-641.	1.3	67
18	Sickness-related odor communication signals as determinants of social behavior in rat: A role for inflammatory processes. Hormones and Behavior, 2010, 57, 330-341.	1.0	64

#	Article	IF	CITATIONS
19	Central infusion of interleukin-1 receptor antagonist blocks the reduction in social behavior produced by prior stressor exposure. Physiology and Behavior, 2009, 98, 139-146.	1.0	61
20	Stress-dependent changes in neuroinflammatory markers observed after common laboratory stressors are not seen following acute social defeat of the Sprague Dawley rat. Physiology and Behavior, 2011, 104, 187-198.	1.0	56
21	Acute Stress May Facilitate Recovery from a Subcutaneous Bacterial Challenge. NeuroImmunoModulation, 1999, 6, 344-354.	0.9	55
22	Enhanced maternal aggression and associated changes in neuropeptide gene expression in multiparous rats Behavioral Neuroscience, 2009, 123, 949-957.	0.6	53
23	Sustained alterations in neuroimmune gene expression after daily, but not intermittent, alcohol exposure. Brain Research, 2016, 1646, 62-72.	1.1	46
24	On the Time Course, Generality, and Regulation of Plasma Progesterone Release in Male Rats by Stress Exposure. Endocrinology, 2014, 155, 3527-3537.	1.4	41
25	Adolescent Ethanol Exposure Leads to Stimulus-Specific Changes in Cytokine Reactivity and Hypothalamic-Pituitary-Adrenal Axis Sensitivity in Adulthood. Frontiers in Behavioral Neuroscience, 2017, 11, 78.	1.0	40
26	Enhancement of the hypothalamic–pituitary–adrenal axis but not cytokine responses to stress challenges imposed during withdrawal from acute alcohol exposure in Sprague–Dawley rats. Psychopharmacology, 2011, 218, 203-215.	1.5	38
27	Factors promoting vulnerability to dysregulated stress reactivity and stressâ€related disease. Journal of Neuroendocrinology, 2018, 30, e12641.	1.2	38
28	Acute illness induces the release of aversive odor cues from adult, but not prepubertal, male rats and suppresses social investigation by conspecifics Behavioral Neuroscience, 2009, 123, 964-978.	0.6	37
29	Effects of the Estrous Cycle and Ovarian Hormones on Central Expression of Interleukin-1 Evoked by Stress in Female Rats. Neuroendocrinology, 2014, 100, 162-177.	1.2	36
30	A cross-sectional comparison of ethanol-related cytokine expression in the hippocampus of young and aged Fischer 344 rats. Neurobiology of Aging, 2017, 54, 40-53.	1.5	36
31	Stereological Analysis of Microglia in Aged Male and Female Fischer 344 Rats in Socially Relevant Brain Regions. Neuroscience, 2018, 377, 40-52.	1.1	33
32	A multispecies approach for understanding neuroimmune mechanisms of stress. Dialogues in Clinical Neuroscience, 2017, 19, 37-53.	1.8	29
33	The impact of the P2X7 receptor antagonist A-804598 on neuroimmune and behavioral consequences of stress. Behavioural Pharmacology, 2014, 25, 582-598.	0.8	26
34	Endogenous opioids as substrates for ethanol intake in the neonatal rat: The impact of prenatal ethanol exposure on the opioid family in the early postnatal period. Physiology and Behavior, 2015, 148, 100-110.	1.0	25
35	Acute stress imposed during adolescence yields heightened anxiety in Sprague Dawley rats that persists into adulthood: Sex differences and potential involvement of the Medial Amygdala. Brain Research, 2019, 1723, 146392.	1.1	25
36	Protracted increases in core body temperature and interleukin-1 following acute administration of lipopolysaccharide: Implications for the stress response. Physiology and Behavior, 2005, 85, 296-307.	1.0	24

#	Article	IF	CITATIONS
37	Analysis of c-Fos induction in response to social interaction in male and female Fisher 344 rats. Brain Research, 2017, 1672, 113-121.	1.1	23
38	A Pivotal Role for Thiamine Deficiency in the Expression of Neuroinflammation Markers in Models of Alcoholâ€Related Brain Damage. Alcoholism: Clinical and Experimental Research, 2019, 43, 425-438.	1.4	21
39	Validation of a novel social investigation task that may dissociate social motivation from exploratory activity. Behavioural Brain Research, 2009, 199, 326-333.	1.2	20
40	The role of neuroinflammation in the release of aversive odor cues from footshock-stressed rats: Implications for the neural mechanism of alarm pheromone. Psychoneuroendocrinology, 2011, 36, 557-568.	1.3	20
41	The Impact of Ventral Noradrenergic Bundle Lesions on Increased IL-1 in the PVN and Hormonal Responses to Stress in Male Sprague Dawley Rats. Endocrinology, 2013, 154, 2489-2500.	1.4	20
42	A working model for the assessment of disruptions in social behavior among aged rats: The role of sex differences, social recognition, and sensorimotor processes. Experimental Gerontology, 2016, 76, 46-57.	1.2	20
43	Late aging alters behavioral sensitivity to ethanol in a sex-specific manner in Fischer 344 rats. Pharmacology Biochemistry and Behavior, 2018, 175, 1-9.	1.3	19
44	Rapid alterations in neuroimmune gene expression after acute ethanol: Timecourse, sex differences and sensitivity to cranial surgery. Journal of Neuroimmunology, 2019, 337, 577083.	1.1	19
45	Assessment of social behavior directed toward sick partners and its relation to central cytokine expression in rats. Physiology and Behavior, 2017, 182, 128-136.	1.0	18
46	Differential effects of acute versus chronic stress on ethanol sensitivity: Evidence for interactions on both behavioral and neuroimmune outcomes. Brain, Behavior, and Immunity, 2018, 70, 141-156.	2.0	18
47	Assessment of Extracellular Cytokines in the Hippocampus of the Awake Behaving Rat Using Largeâ€Molecule Microdialysis Combined with Multiplex Arrays After Acute and Chronic Ethanol Exposure. Alcoholism: Clinical and Experimental Research, 2019, 43, 640-654.	1.4	18
48	Naproxen attenuates sensitization of depressive-like behavior and fever during maternal separation. Physiology and Behavior, 2015, 139, 34-40.	1.0	17
49	Immune Cells and Cytokine Circuits: Toward a Working Model for Understanding Direct Immune-to-Adrenal Communication Pathways. Endocrinology, 2008, 149, 1433-1435.	1.4	16
50	Assessment of neuroinflammation in the aging hippocampus using large-molecule microdialysis: Sex differences and role of purinergic receptors. Brain, Behavior, and Immunity, 2021, 91, 546-555.	2.0	16
51	Repeated exposure to two stressors in sequence demonstrates that corticosterone and paraventricular nucleus of the hypothalamus interleukinâ€1β responses habituate independently. Journal of Neuroendocrinology, 2017, 29, e12514.	1.2	15
52	The influence of central interleukin-6 on behavioral changes associated with acute alcohol intoxication in adult male rats. Alcohol, 2019, 79, 37-45.	0.8	15
53	Exposure to the predator odor <scp>TMT</scp> induces early and late differential gene expression related to stress and excitatory synaptic function throughout the brain in male rats. Genes, Brain and Behavior, 2020, 19, e12684.	1.1	15
54	Early Attachment Disruption, Inflammation, and Vulnerability for Depression in Rodent and Primate Models. Frontiers in Behavioral Neuroscience, 2019, 12, 314.	1.0	14

#	Article	IF	CITATIONS
55	From adolescence to late aging: A comprehensive review of social behavior, alcohol, and neuroinflammation across the lifespan. International Review of Neurobiology, 2019, 148, 231-303.	0.9	14
56	Interoception and alcohol: Mechanisms, networks, and implications. Neuropharmacology, 2021, 200, 108807.	2.0	12
57	Fibrillization of 40-residue \hat{l}^2 -Amyloid Peptides in Membrane-Like Environments Leads to Different Fibril Structures and Reduced Molecular Polymorphisms. Biomolecules, 2020, 10, 881.	1.8	11
58	Play behavior in rats pretreated with scopolamine: Increased play solicitation by the non-injected partner. Physiology and Behavior, 2006, 87, 120-125.	1.0	10
59	From hippocampus to dorsal horn: The pervasive impact of IL-1 on learning and memory spans the length of the neuroaxis. Brain, Behavior, and Immunity, 2007, 21, 746-747.	2.0	10
60	Late aging–associated increases in L-DOPA–induced dyskinesia areÂaccompanied by heightened neuroinflammation in the hemi-parkinsonian rat. Neurobiology of Aging, 2019, 81, 190-199.	1.5	10
61	Gene expression profiling reveals a lingering effect of prenatal alcohol exposure on inflammatory-related genes during adolescence and adulthood. Cytokine, 2020, 133, 155126.	1.4	10
62	Prenatal and adolescent alcohol exposure programs immunity across the lifespan: CNS-mediated regulation. Pharmacology Biochemistry and Behavior, 2022, 216, 173390.	1.3	10
63	Accelerated maternal responding following intra-VTA pertussis toxin treatment. Behavioural Brain Research, 2011, 223, 322-328.	1.2	9
64	Maternal separation increases later immobility during forced swim in guinea pig pups: evidence for sensitization of a depressiveâ€ike state. Developmental Psychobiology, 2017, 59, 128-132.	0.9	9
65	Neuroendocrine and neuroimmune responses in male and female rats: evidence for functional immaturity of the neuroimmune system during early adolescence. European Journal of Neuroscience, 2022, 55, 2311-2325.	1.2	9
66	The Tollâ€like receptor 7 agonist imiquimod increases ethanol selfâ€administration and induces expression of Tollâ€like receptor related genes. Addiction Biology, 2022, 27, e13176.	1.4	9
67	Central neuroimmune activity and depressive-like behavior in response to repeated maternal separation and injection of LPS. Physiology and Behavior, 2019, 199, 366-374.	1.0	8
68	Corticosterone and progesterone differentially regulate HPA axis and neuroimmune responses to stress in male rats. Stress, 2020, 23, 368-385.	0.8	8
69	Conditioning the neuroimmune response to ethanol using taste and environmental cues in adolescent and adult rats. Experimental Biology and Medicine, 2019, 244, 362-371.	1.1	7
70	Neuroendocrine and neuroimmune adaptation to Chronic Escalating Distress (CED): A novel model of chronic stress. Neurobiology of Stress, 2018, 9, 74-83.	1.9	6
71	Impact of housing conditions on social behavior, neuroimmune markers, and oxytocin receptor expression in aged male and female Fischer 344 rats. Experimental Gerontology, 2019, 123, 24-33.	1.2	6
72	Lowâ€dose alcohol: Interoceptive and molecular effects and the role of dentate gyrus in rats. Addiction Biology, 2021, 26, e12965.	1.4	6

#	Article	IF	CITATIONS
73	Male, but not female, Sprague Dawley rats display enhanced fear learning following acute ethanol withdrawal (hangover). Pharmacology Biochemistry and Behavior, 2021, 208, 173229.	1.3	6
74	Acute stress imposed during adolescence has minimal effects on hypothalamic-pituitary-adrenal (HPA) axis sensitivity in adulthood in female Sprague Dawley rats. Physiology and Behavior, 2020, 213, 112707.	1.0	5
75	Preface: Setting the stage for understanding alcohol effects in late aging: A special issue including both human and rodent studies. International Review of Neurobiology, 2019, 148, xiii-xxv.	0.9	4
76	Presence of mother prompts dissociation of sickness behavior, fever, and hypothalamic gene expression in lipopolysaccharideâ€injected guinea pig pups. Developmental Psychobiology, 2020, 62, 749-757.	0.9	3
77	Early ontogeny as a unique developmental epoch for learning, memory and consequences of alcohol exposure: A Festschrift to honor the work of Dr. Norman E. Spear. Physiology and Behavior, 2015, 148, 1-5.	1.0	1
78	Sensitization of depressiveâ€like behavior is attenuated by disruption of prostaglandin synthesis days following brief early attachmentâ€ligure isolation. Developmental Psychobiology, 2022, 64, e22237.	0.9	1
79	Stress, Sleep, and Sexuality in Psychiatric Disorders. , 0, , 111-143.		0
80	A brief overview of the 2016 Neurobiology of Stress Workshop. Neurobiology of Stress, 2017, 7, 122-123.	1.9	0