
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4795865/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Developing a three-dimensional co-continuous phase network structure <i>via</i> enhanced inter-component affinity for high-performance flexible organic radical electrodes. Journal of Materials Chemistry A, 2022, 10, 13286-13297.	5.2	3
2	Thermal aging performance of glass fiber/polyphenylene sulfide composites in high temperature. Journal of Applied Polymer Science, 2021, 138, 50948.	1.3	6
3	Preparation and thermal property of ultrahigh molecular weight polyethylene composites filled by calcium carbonate modified with long chain. Journal of Thermoplastic Composite Materials, 2020, 33, 464-476.	2.6	8
4	Non-isothermal crystallization kinetics of UHMWPE composites filled by oligomer-modified CaCO3. Journal of Thermal Analysis and Calorimetry, 2020, 139, 1111-1120.	2.0	19
5	Preparation and characterization of ultrahigh molecular weight polyethylene composites with high content of multiwall carbon nanotubes. Polymer Composites, 2020, 41, 1972-1978.	2.3	11
6	Effect of hybrid wollastonite with different nucleation and morphology on the crystallization and mechanical properties of polypropylene. Polymer Composites, 2019, 40, E638.	2.3	17
7	A novel polypropylene composite filled by kaolin particles with β-nucleation. Journal of Thermal Analysis and Calorimetry, 2019, 135, 2137-2145.	2.0	11
8	Quick analysis of composition of semi-aromatic copolyamide via ¹³ C NMR study. International Journal of Polymer Analysis and Characterization, 2019, 24, 40-53.	0.9	3
9	βâ€Crystallization and mechanical properties of aluminum hydroxideâ€filled polypropylene composites. Polymer Composites, 2019, 40, E194.	2.3	6
10	A general dissolution–recrystallization strategy to achieve sulfur-encapsulated carbon for an advanced lithium–sulfur battery. Journal of Materials Chemistry A, 2018, 6, 11664-11669.	5.2	38
11	Longâ€Life and Highâ€Power Binderâ€Free Cathode Based on Oneâ€Step Synthesis of Radical Polymers with Multiâ€Pendant Groups. Macromolecular Rapid Communications, 2018, 39, e1800195.	2.0	10
12	Ultrahigh energy fiber-shaped supercapacitors based on porous hollow conductive polymer composite fiber electrodes. Journal of Materials Chemistry A, 2018, 6, 12250-12258.	5.2	45
13	Mechanical properties improvement of montmorilloniteâ€filled isotactic polypropylene nanocomposites by βâ€modification. Polymer Composites, 2017, 38, E412.	2.3	8
14	Nonisothermal crystallization kinetics of bio-based semi-aromatic polyamides. Journal of Thermal Analysis and Calorimetry, 2017, 130, 1021-1030.	2.0	11
15	Preparation and crystallization of aluminum hydroxide-filled β-polypropylene composites. Journal of Thermal Analysis and Calorimetry, 2017, 130, 773-780.	2.0	6
16	Preparation of ZnO-supported 13X zeolite particles and their antimicrobial mechanism. Journal of Materials Research, 2017, 32, 4232-4240.	1.2	5
17	Preparation and characterization of polypropylene composites with nonmetallic materials recycled from printed circuit boards. Journal of Thermoplastic Composite Materials, 2016, 29, 48-57.	2.6	13
18	Molecular chain bonding synthesis of nanoporous, flexible and conductive polymer composite with outstanding performance for supercapacitors. Journal of Materials Chemistry A, 2016, 4, 10091-10097.	5.2	15

#	Article	IF	CITATIONS
19	Non-isothermal crystallization kinetics of montmorillonite filled β-isotactic polypropylene nanocomposites. Journal of Thermal Analysis and Calorimetry, 2015, 121, 829-838.	2.0	15
20	Influence of different β-nucleating agent on crystallization behavior, morphology, and melting characteristic of multiwalled carbon nanotube-filled isotactic polypropylene nanocomposites. Polymer Composites, 2015, 36, 635-643.	2.3	25
21	Three-dimensional carbon nanotube/ethylvinylacetate/polyaniline as a high performance electrode for supercapacitors. Journal of Materials Chemistry A, 2015, 3, 1884-1889.	5.2	31
22	Effect of nano-ZnO-supported 13X zeolite on photo-oxidation degradation and antimicrobial properties of polypropylene random copolymer. Polymer Bulletin, 2014, 71, 2981-2997.	1.7	13
23	Non-isothermal crystallization kinetics and morphology of wollastonite-filled β-isotactic polypropylene composites. Journal of Thermal Analysis and Calorimetry, 2014, 115, 675-688.	2.0	21
24	Crystalline morphology and mechanical properties of isotactic polypropylene composites filled by wollastonite with β-nucleating surface. Polymer Composites, 2014, 35, 1445-1452.	2.3	13
25	Preparation and investigation of the βâ€nucleated polypropylene/polystyrene blends. Journal of Applied Polymer Science, 2013, 127, 1114-1121.	1.3	4
26	The β-nucleating effect of wollastonite-filled isotactic polypropylene composites. Polymer Bulletin, 2013, 70, 919-938.	1.7	11
27	Preparation and β-crystallization of zeolite filled isotactic polypropylene composites. Composites Part A: Applied Science and Manufacturing, 2013, 45, 88-94.	3.8	11
28	Conductive membranes of EVA filled with carbon black and carbon nanotubes for flexible energy-storage devices. Journal of Materials Chemistry A, 2013, 1, 505-509.	5.2	41
29	Effect of blending way on β-crystallization tendency of compatibilized β-nucleated isotactic polypropylene/poly(ethylene terephthalate) blends. Journal of Thermal Analysis and Calorimetry, 2013, 111, 1585-1593.	2.0	9
30	Nucleation effect of montmorillonite with β-nucleating surface on polymorphous of melt-crystallized isotactic polypropylene nanocomposites. Composites Science and Technology, 2013, 89, 38-43.	3.8	28
31	A novel montmorillonite with β-nucleating surface for enhancing β-crystallization of isotactic polypropylene. Composites Part A: Applied Science and Manufacturing, 2013, 49, 1-8.	3.8	49
32	Preparation and characterization of wollastonite with a β-nucleating surface and its filled isotactic polypropylene composites. Journal of Materials Science, 2013, 48, 5225-5235.	1.7	13
33	Effect of acrylonitrile–butadiene–styrene copolymer (ABS) on β-nucleation in β-nucleated polypropylene/ABS blends. Polymer Bulletin, 2012, 69, 847-859.	1.7	14
34	The β-nucleation of polypropylene random copolymer filled by nano-CaCO3 supported β-nucleating agent. Journal of Thermal Analysis and Calorimetry, 2012, 109, 1587-1596.	2.0	14
35	Synergistic effects of toughening of nano-CaCO3 and toughness of β-polypropylene. Composites Part A: Applied Science and Manufacturing, 2012, 43, 189-197.	3.8	64
36	Î ² -Nucleation of pimelic acid supported on metal oxides in isotactic polypropylene. Polymer International, 2012, 61, 818-824.	1.6	16

#	Article	IF	CITATIONS
37	Preparation and properties of eggshell∫î²â€polypropylene bioâ€composites. Journal of Applied Polymer Science, 2012, 125, 61-66.	1.3	38
38	Crystallization behavior and melting characteristics of wollastonite filled β-isotactic polypropylene composites. Thermochimica Acta, 2012, 536, 47-54.	1.2	35
39	Nonisothermal crystallization kinetics of isotactic polypropylene nucleated with a novel supported β-nucleating agent. Journal of Thermal Analysis and Calorimetry, 2011, 103, 311-318.	2.0	27
40	Preparation, non-isothermal crystallization, and melting behavior of Î ² -nucleated isotactic polypropylene/poly (ethylene terephthalate) blends. Journal of Thermal Analysis and Calorimetry, 2011, 106, 895-903.	2.0	13
41	Microstructure Evolution and Dynamic Stages of Cold rystallized Poly(trimethylene terephthalate) Revealed by Synchronous Fluorescence Scanning. Macromolecular Chemistry and Physics, 2011, 212, 1176-1184.	1.1	1
42	Nonisothermal crystallization and melting behavior of βâ€nucleated isotactic polypropylene and polyamide 66 blends. Journal of Applied Polymer Science, 2011, 119, 3566-3573.	1.3	13
43	Role of interfacial interaction on the crystallization behavior and melting characteristics of PP/Nano-CaCO3 composites modified with different compatibilizers. E-Polymers, 2010, 10, .	1.3	2
44	Crystallization and melting behavior of PP/nano-CaCO3 composites with different interfacial interaction. Journal of Thermal Analysis and Calorimetry, 2010, 99, 399-407.	2.0	15
45	Crystallization and melting behavior of PP/CaCO3 nanocomposites during thermo-oxidative degradation. Journal of Thermal Analysis and Calorimetry, 2010, 100, 999-1008.	2.0	20
46	Dynamic rheological behavior and morphology of poly(trimethylene terephthalate)/poly(ethylene) Tj ETQq0 0 0 i	rgBT /Over 1.3	lock 10 Tf 50
47	A novel highly efficient βâ€nucleating agent for polypropylene using nano aCO ₃ as a support. Polymer International, 2010, 59, 1199-1204.	1.6	48
48	Preparation, crystallization behavior, and melting characteristics of βâ€nucleated isotactic polypropylene blends with polyamide 6. Journal of Applied Polymer Science, 2009, 112, 1-8.	1.3	28
49	Effect of interfacial interaction on the crystallization and mechanical properties of PP/nano-CaCO3composites modified by compatibilizers. Journal of Applied Polymer Science, 2009, 113, 1584-1592.	1.3	25
50	Melting characteristic and βâ€crystal content of βâ€nucleated polypropylene/polyamide 6 alloys prepared using different compounding methods. Polymer International, 2009, 58, 1366-1372.	1.6	21
51	Crystalline morphology and dynamical crystallization of antibacterial βâ€polypropylene composite. Journal of Applied Polymer Science, 2008, 110, 3401-3409.	1.3	2
52	Crystallization behavior and melting characteristics of PP nucleated by a novel supported β-nucleating agent. Polymer, 2008, 49, 5137-5145.	1.8	107
53	Preparation and characteristics of nano-CaCO3 supported β-nucleating agent of polypropylene. European Polymer Journal, 2008, 44, 1955-1961.	2.6	82
54	Effect of Inorganic Filler on the Crystallization, Mechanical Properties and Rheological Behavior of Poly(trimethylene terephthalate). Polymer-Plastics Technology and Engineering, 2007, 46, 417-420.	1.9	12

#	Article	IF	CITATIONS
55	Effect of HIPS on polymorphism, melting, and crystallization behavior of sPS crystallized dynamically from melting state. Journal of Applied Polymer Science, 2007, 103, 3353-3361.	1.3	2
56	Chitosan-graft-poly(ε-caprolactone)s: An optimized chemical approach leading to a controllable structure and enhanced properties. Journal of Polymer Science Part A, 2007, 45, 2556-2568.	2.5	34
57	Investigation on multiple-melting behavior of nano-CaCO3/polypropylene composites. Frontiers of Chemical Engineering in China, 2007, 1, 81-86.	0.6	1
58	Plasticization of nano-CaCO3 in polystyrene/nano-CaCO3 composites. Journal of Applied Polymer Science, 2006, 99, 2138-2143.	1.3	12
59	Crystallization and dynamic mechanical properties of polypropylene/polystyrene blends modified with maleic anhydride and styrene. Journal of Applied Polymer Science, 2005, 96, 2038-2045.	1.3	12
60	Crystallization and melting behavior of nano-CaCO3/polypropylene composites modified by acrylic acid. Journal of Applied Polymer Science, 2004, 91, 2443-2453.	1.3	67
61	Multiple melting behavior of nucleated polypropylene. Journal of Applied Polymer Science, 2003, 88, 1608-1611.	1.3	15
62	Study on the thermal stability of heterogeneous nucleation effect of polypropylene nucleated by different nucleating agents. Journal of Applied Polymer Science, 2002, 83, 1643-1650.	1.3	23
63	Physical and mechanical properties of Al(OH)3/polypropylene composites modified by in situ-functionalized polypropylene. Journal of Applied Polymer Science, 2002, 83, 2850-2857.	1.3	18
64	Interfacial interaction in AI(OH)3/polypropylene composites modified byinsitu-functionalized polypropylene. Journal of Applied Polymer Science, 2002, 84, 110-120.	1.3	21
65	Physical properties of PP-g-AA prepared by melt extrusion and its effects on mechanical properties of PP. Journal of Applied Polymer Science, 2001, 80, 2609-2616.	1.3	21
66	Mechanical properties and fracture morphology of Al(OH)3/polypropylene composites modified by PP grafting with acrylic acid. Journal of Applied Polymer Science, 2001, 80, 2617-2623.	1.3	31
67	Interaction of self-nucleation and the addition of a nucleating agent on the crystallization behavior of isotactic polypropylene. Journal of Applied Polymer Science, 2001, 81, 78-84.	1.3	17
68	Thermal properties and flame retardance of Al(OH)3/polypropylene composites modified by polypropylene grafting with acrylic acid. Journal of Applied Polymer Science, 2001, 81, 2679-2686.	1.3	25
69	Effect of silane-grafted polypropylene on the mechanical properties and crystallization behavior of talc/polypropylene composites. Journal of Applied Polymer Science, 2000, 77, 2974-2977.	1.3	62
70	Multiple melting behavior of polyphenylene sulfide blends with polyamide 6. Journal of Applied Polymer Science, 2000, 78, 1579-1585.	1.3	13
71	Isothermal crystallization behavior and melting characteristics of injection sample of nucleated polypropylene. Journal of Applied Polymer Science, 2000, 78, 2547-2553.	1.3	25
72	Effect of macromolecular coupling agent on the property of PP/GF composites. Journal of Applied Polymer Science, 1999, 71, 1537-1542.	1.3	54

#	Article	IF	CITATIONS
73	Nonisothermal crystallization of poly(phenylene sulfide) in presence of molten state of crystalline polyamide 6. Journal of Applied Polymer Science, 1999, 74, 3033-3039.	1.3	18
74	Effect of high-performance polymers on crystallization and multiple melting behavior of poly(phenylene sulfide). Journal of Applied Polymer Science, 1998, 69, 637-644.	1.3	19
75	Effect of blending on the multiple melting behavior of polyphenylene sulfide. Journal of Applied Polymer Science, 1997, 63, 1001-1008.	1.3	15
76	Studies of the stability of thermoplastic-modified bismaleimide resin. Journal of Applied Polymer Science, 1997, 66, 1965-1970.	1.3	19
77	Effect of a China-made poly(aryl-ether-ketone) on the crystallization kinetics of poly(1,4-phenylene) Tj ETQq1 1 0	.784314 r	gBT /Overlo
78	Double melting phenomena of polyphenylene sulfide and its blends. Journal of Applied Polymer Science, 1994, 51, 57-62.	1.3	22
79	Mechanical property and fracture morphology of fiber-reinforced polysulfone plasticized with acetylene-terminated sulfone. Journal of Applied Polymer Science, 1994, 52, 1279-1291.	1.3	4
80	High-performance semi-interpenetrating polymer networks based on acetylene-terminated sulfone. II. Phase separation and morphology. Journal of Applied Polymer Science, 1994, 53, 1653-1661.	1.3	6
81	Young's modulus of transcrystallinities in semicrystalline thermoplastic composites. Journal of Applied Polymer Science, 1994, 54, 541-551.	1.3	5
82	High performance semi-interpenetrating polymeric networks based on acetylene-terminated sulfone. Part I. Cure and thermal characteristics. Journal of Applied Polymer Science, 1993, 49, 2105-2114.	1.3	4
83	Enthalpy Relaxation in Poly(aryl ether ketone bearing phthalidylidene group). Polymer Journal, 1993, 25, 541-543.	1.3	3