
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4795698/publications.pdf Version: 2024-02-01

KENCO SUDO

#	Article	IF	CITATIONS
1	A comparison of the impact of TROPOMI and OMI tropospheric NO ₂ on global chemical data assimilation. Atmospheric Measurement Techniques, 2022, 15, 1703-1728.	1.2	11
2	Contributions of World Regions to the Global Tropospheric Ozone Burden Change From 1980 to 2010. Geophysical Research Letters, 2021, 48, .	1.5	22
3	Mapping Yearly Fine Resolution Global Surface Ozone through the Bayesian Maximum Entropy Data Fusion of Observations and Model Output for 1990–2017. Environmental Science & Technology, 2021, 55, 4389-4398.	4.6	47
4	Continuous multi-component MAX-DOAS observations for the planetary boundary layer ozone variation analysis at Chiba and Tsukuba, Japan, from 2013 to 2019. Progress in Earth and Planetary Science, 2021, 8, .	1.1	8
5	Effects of heterogeneous reactions on tropospheric chemistry: a global simulation with the chemistry–climate model CHASER V4.0. Geoscientific Model Development, 2021, 14, 3813-3841.	1.3	5
6	Global tropospheric ozone responses to reduced NO _{<i>x</i>} emissions linked to the COVID-19 worldwide lockdowns. Science Advances, 2021, 7, .	4.7	72
7	Responses of Arctic black carbon and surface temperature to multi-region emission reductions: a Hemispheric Transport of Air Pollution Phase 2 (HTAP2) ensemble modeling study. Atmospheric Chemistry and Physics, 2021, 21, 8637-8654.	1.9	8
8	Impacts of Horizontal Resolution on Global Data Assimilation of Satellite Measurements for Tropospheric Chemistry Analysis. Journal of Advances in Modeling Earth Systems, 2021, 13, e2020MS002180.	1.3	7
9	A development of reduction scenarios of the short-lived climate pollutants (SLCPs) for mitigating global warming and environmental problems. Progress in Earth and Planetary Science, 2020, 7, .	1.1	11
10	Evaluation of a multi-model, multi-constituent assimilation framework for tropospheric chemical reanalysis. Atmospheric Chemistry and Physics, 2020, 20, 931-967.	1.9	40
11	Model Inter-Comparison for PM2.5 Components over urban Areas in Japan in the J-STREAM Framework. Atmosphere, 2020, 11, 222.	1.0	14
12	Evaluation and uncertainty investigation of the NO ₂ , CO and NH ₃ modeling over China under the framework of MICS-AsiaÂIII. Atmospheric Chemistry and Physics, 2020, 20, 181-202.	1.9	41
13	Projecting ozone hole recovery using an ensemble of chemistry–climate models weighted by model performance and independence. Atmospheric Chemistry and Physics, 2020, 20, 9961-9977.	1.9	16
14	Updated tropospheric chemistry reanalysis and emission estimates, TCR-2, for 2005–2018. Earth System Science Data, 2020, 12, 2223-2259.	3.7	54
15	Global Bromine- and Iodine-Mediated Tropospheric Ozone Loss Estimated Using the CHASER Chemical Transport Model. Scientific Online Letters on the Atmosphere, 2020, 16, 220-227.	0.6	6
16	Ultraviolet Radiation modelling using output from the Chemistry Climate Model Initiative. , 2019, 19, 10087-10110.		5
17	Seasonal features and origins of carbonaceous aerosols at Syowa Station, coastal Antarctica. Atmospheric Chemistry and Physics, 2019, 19, 7817-7837.	1.9	18
18	Description and basic evaluation of simulated mean state, internal variability, and climate sensitivity in MIROC6. Geoscientific Model Development, 2019, 12, 2727-2765.	1.3	439

#	Article	IF	CITATIONS
19	Clear-sky ultraviolet radiation modelling using output from the Chemistry Climate Model Initiative. Atmospheric Chemistry and Physics, 2019, 19, 10087-10110.	1.9	22
20	Effect of global atmospheric aerosol emission change on PM _{2.5} -related health impacts. Global Health Action, 2019, 12, 1664130.	0.7	5
21	Evaluation of tropospheric ozone and ozone precursors in simulations from the HTAPII and CCMI model intercomparisons $\hat{a} \in $ a focus on the Indian subcontinent. Atmospheric Chemistry and Physics, 2019, 19, 6437-6458.	1.9	23
22	Ozone and carbon monoxide observations over open oceans on R/VÂ <i>Mirai</i> from 67° S to 75° N during 2012 to 2017: testing glob chemical reanalysis in terms of Arctic processes, low ozone levels at low latitudes, and pollution transport. Atmospheric Chemistry and Physics, 2019, 19, 7233-7254.)al 1.9	19
23	A new method (M ³ Fusion v1) for combining observations and multiple model output for an improved estimate of the global surface ozone distribution. Geoscientific Model Development, 2019, 12, 955-978.	1.3	23
24	Quasi-Biennial Oscillations in Atmospheric Ozone from the Chemistry-Climate Model and Ozone Reanalysis. American Journal of Climate Change, 2019, 08, 110-136.	0.5	0
25	Development of human health damage factors for PM2.5 based on a global chemical transport model. International Journal of Life Cycle Assessment, 2018, 23, 2300-2310.	2.2	37
26	Ozone sensitivity to varying greenhouse gases and ozone-depleting substances in CCMI-1 simulations. Atmospheric Chemistry and Physics, 2018, 18, 1091-1114.	1.9	56
27	Development of human health damage factors for tropospheric ozone considering transboundary transport on a global scale. International Journal of Life Cycle Assessment, 2018, 23, 2339-2348.	2.2	10
28	Two-scale multi-model ensemble: is a hybrid ensemble of opportunity telling us more?. Atmospheric Chemistry and Physics, 2018, 18, 8727-8744.	1.9	10
29	Long-range transport impacts on surface aerosol concentrations and the contributions to haze events in China: an HTAP2 multi-model study. Atmospheric Chemistry and Physics, 2018, 18, 15581-15600.	1.9	12
30	The effects of intercontinental emission sources on European air pollution levels. Atmospheric Chemistry and Physics, 2018, 18, 13655-13672.	1.9	34
31	Estimates of the Global Burden of Ambient PM2.5, Ozone, and NO2 on Asthma Incidence and Emergency Room Visits. Environmental Health Perspectives, 2018, 126, 107004.	2.8	209
32	Extremal dependence between temperature and ozone over the continental US. Atmospheric Chemistry and Physics, 2018, 18, 11927-11948.	1.9	12
33	Multi-model study of HTAPÂII on sulfur and nitrogen deposition. Atmospheric Chemistry and Physics, 2018, 18, 6847-6866.	1.9	49
34	Global high-resolution simulations of tropospheric nitrogen dioxide using CHASER V4.0. Geoscientific Model Development, 2018, 11, 959-988.	1.3	23
35	HTAP2 multi-model estimates of premature human mortality due to intercontinental transport of air pollution and emission sectors. Atmospheric Chemistry and Physics, 2018, 18, 10497-10520.	1.9	54
36	Estimates of ozone return dates from Chemistry-Climate Model Initiative simulations. Atmospheric Chemistry and Physics, 2018, 18, 8409-8438.	1.9	128

#	Article	IF	CITATIONS
37	Evaluation of summertime surface ozone in Kanto area of Japan using a semi-regional model and observation. Atmospheric Environment, 2017, 153, 163-181.	1.9	20
38	Future global mortality from changes in air pollution attributable to climate change. Nature Climate Change, 2017, 7, 647-651.	8.1	177
39	Formaldehyde in the Tropical Western Pacific: Chemical Sources and Sinks, Convective Transport, and Representation in CAMâ€Chem and the CCMI Models. Journal of Geophysical Research D: Atmospheres, 2017, 122, 11201-11226.	1.2	32
40	Investigation of global particulate nitrate from the AeroCom phaseÂIII experiment. Atmospheric Chemistry and Physics, 2017, 17, 12911-12940.	1.9	99
41	Impact of intercontinental pollution transport on North American ozone air pollution: an HTAP phase 2 multi-model study. Atmospheric Chemistry and Physics, 2017, 17, 5721-5750.	1.9	51
42	Long-term change in the source contribution to surface ozone over Japan. Atmospheric Chemistry and Physics, 2017, 17, 8231-8246.	1.9	44
43	Decadal changes in global surface NO _{<i>x</i>} emissions from multi-constituent satellite data assimilation. Atmospheric Chemistry and Physics, 2017, 17, 807-837.	1.9	228
44	Review of the global models used within phase 1 of the Chemistry–Climate Model Initiative (CCMI). Geoscientific Model Development, 2017, 10, 639-671.	1.3	277
45	Global and regional radiative forcing from 20 % reductions in BC, OC and SO ₄ – an HTAP2 multi-model study. Atmospheric Chemistry and Physics, 2016, 16, 13579-13599.	1.9	42
46	The effect of future ambient air pollution on human premature mortality to 2100 using output from the ACCMIP model ensemble. Atmospheric Chemistry and Physics, 2016, 16, 9847-9862.	1.9	101
47	Use of North American and European air quality networks to evaluate global chemistry–climate modeling of surface ozone. Atmospheric Chemistry and Physics, 2015, 15, 10581-10596.	1.9	50
48	A tropospheric chemistry reanalysis for the years 2005–2012 based on an assimilation of OMI, MLS, TES, and MOPITT satellite data. Atmospheric Chemistry and Physics, 2015, 15, 8315-8348.	1.9	70
49	SLCP co-control approach in East Asia: Tropospheric ozone reduction strategy by simultaneous reduction of NO x /NMVOC and methane. Atmospheric Environment, 2015, 122, 588-595.	1.9	29
50	Long-term MAX-DOAS network observations of NO ₂ in Russia and Asia (MADRAS) during the period 2007–2012: instrumentation, elucidation of climatology, and comparisons with OMI satellite observations and global model simulations. Atmospheric Chemistry and Physics, 2014, 14, 7909-7927.	1.9	85
51	Global lightning NO _x production estimated by an assimilation of multiple satellite data sets. Atmospheric Chemistry and Physics, 2014, 14, 3277-3305.	1.9	84
52	Three decades of global methane sources and sinks. Nature Geoscience, 2013, 6, 813-823.	5.4	1,649
53	Global premature mortality due to anthropogenic outdoor air pollution and the contribution of past climate change. Environmental Research Letters, 2013, 8, 034005.	2.2	381
54	The Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP): overview and description of models, simulations and climate diagnostics. Geoscientific Model Development, 2013, 6, 179-206.	1.3	388

#	Article	IF	CITATIONS
55	Preindustrial to present-day changes in tropospheric hydroxyl radical and methane lifetime from the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP). Atmospheric Chemistry and Physics, 2013, 13, 5277-5298.	1.9	288
56	Pre-industrial to end 21st century projections of tropospheric ozone from the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP). Atmospheric Chemistry and Physics, 2013, 13, 2063-2090.	1.9	570
57	Evaluation of preindustrial to present-day black carbon and its albedo forcing from Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP). Atmospheric Chemistry and Physics, 2013, 13, 2607-2634.	1.9	125
58	Tropospheric ozone changes, radiative forcing and attribution to emissions in the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP). Atmospheric Chemistry and Physics, 2013, 13, 3063-3085.	1.9	361
59	Analysis of present day and future OH and methane lifetime in the ACCMIP simulations. Atmospheric Chemistry and Physics, 2013, 13, 2563-2587.	1.9	257
60	Radiative forcing in the ACCMIP historical and future climate simulations. Atmospheric Chemistry and Physics, 2013, 13, 2939-2974.	1.9	395
61	Evaluation of ACCMIP outgoing longwave radiation from tropospheric ozone using TES satellite observations. Atmospheric Chemistry and Physics, 2013, 13, 4057-4072.	1.9	61
62	Role of meteorological variability in global tropospheric ozone during 1970–2008. Journal of Geophysical Research, 2012, 117, .	3.3	19
63	Simulation of urban and regional air pollution in Bangladesh. Journal of Geophysical Research, 2012, 117, .	3.3	19
64	Global air quality and climate. Chemical Society Reviews, 2012, 41, 6663.	18.7	428
65	Enhanced Mid-Latitude Tropospheric Column Ozone over East Asia: Coupled Effects of Stratospheric Ozone Intrusion and Anthropogenic Sources. Journal of the Meteorological Society of Japan, 2012, 90, 207-222.	0.7	9
66	Future changes in tropospheric ozone under Representative Concentration Pathways (RCPs). Geophysical Research Letters, 2011, 38, n/a-n/a.	1.5	85
67	Temporal and spatial variations of carbon monoxide over the western part of the Pacific Ocean. Journal of Geophysical Research, 2009, 114, .	3.3	33
68	Global modeling analysis of tropospheric ozone and its radiative forcing from biomass burning emissions in the twentieth century. Journal of Geophysical Research, 2007, 112, .	3.3	16
69	Estimation of the contribution of intercontinental transport during the PEACE campaign by using a global model. Journal of Geophysical Research, 2005, 110, .	3.3	18
70	Why does surface ozone peak in summertime at Waliguan?. Geophysical Research Letters, 2004, 31, n/a-n/a.	1.5	69
71	Future changes in stratosphere-troposphere exchange and their impacts on future tropospheric ozone simulations. Geophysical Research Letters, 2003, 30, .	1.5	73
72	CHASER: A global chemical model of the troposphere 1. Model description. Journal of Geophysical Research, 2002, 107, ACH 7-1-ACH 7-20.	3.3	207

#	Article	IF	CITATIONS
73	CHASER: A global chemical model of the troposphere 2. Model results and evaluation. Journal of Geophysical Research, 2002, 107, ACH 9-1-ACH 9-39.	3.3	69
74	Simulation of tropospheric ozone changes during 1997-1998 El Niño: Meteorological impact on tropospheric photochemistry. Geophysical Research Letters, 2001, 28, 4091-4094.	1.5	62