
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4795488/publications.pdf Version: 2024-02-01

ZHILLE YANG

#	Article	IF	CITATIONS
1	Active Regulation of Supramolecular Chirality through Integration of CdSe/CdS Nanorods for Strong and Tunable Circular Polarized Luminescence. Journal of the American Chemical Society, 2022, 144, 2333-2342.	6.6	31
2	Chirality Inversion in Selfâ€Assembled Nanocomposites Directed by Curvatureâ€Mediated Interactions. Angewandte Chemie - International Edition, 2022, 61, e202117406.	7.2	18
3	Chirality Inversion in Selfâ€Assembled Nanocomposites Directed by Curvatureâ€Mediated Interactions. Angewandte Chemie, 2022, 134, .	1.6	5
4	Folding of two-dimensional nanoparticle superlattices enabled by emulsion-confined supramolecular co-assembly. Chemical Communications, 2022, 58, 3819-3822.	2.2	0
5	Chemically-Controlled Ultrafast Photothermal Response in Plasmonic Nanostructured Assemblies. Journal of Physical Chemistry C, 2022, 126, 6308-6317.	1.5	9
6	Surface Plasmon Resonance Properties of Silver Nanocrystal Superlattices Spaced by Polystyrene Ligands. Journal of Physical Chemistry C, 2022, 126, 4948-4958.	1.5	3
7	Energy Storage Application of All-Organic Polymer Dielectrics: A Review. Polymers, 2022, 14, 1160.	2.0	29
8	Diversifying Nanoparticle Superstructures and Functions Enabled by Translative Templating from Supramolecular Polymerization. Angewandte Chemie - International Edition, 2022, 61, .	7.2	10
9	Self-assembled artificial enzyme from hybridized porous organic cages and iron oxide nanocrystals. Journal of Colloid and Interface Science, 2022, 621, 331-340.	5.0	7
10	Functional Droplets Stabilized by Interfacially Selfâ€Assembled Chiral Nanocomposites. Angewandte Chemie - International Edition, 2022, 61, .	7.2	3
11	Selfâ€Assemblies of Fe ₃ O ₄ Nanocrystals: Toward Nanoscale Precision of Photothermal Effects in the Tumor Microenvironment. Advanced Functional Materials, 2021, 31, 2006824.	7.8	35
12	Dynamic emulsion droplets enabled by interfacial assembly of azobenzene-functionalized nanoparticles under light and magnetic field. Journal of Colloid and Interface Science, 2021, 583, 586-593.	5.0	3
13	Integrative self-assembly of covalent organic frameworks and fluorescent molecules for ultrasensitive detection of a nerve agent simulant. Science China Materials, 2021, 64, 1189-1196.	3.5	5
14	Water Dispersive Suprastructures: An Organizational Impact on Nanomechanical Properties. Advanced Materials Interfaces, 2021, 8, 2001687.	1.9	8
15	Hierarchically Porous Organic Cages. Angewandte Chemie - International Edition, 2021, 60, 12490-12497.	7.2	43
16	Hierarchically Porous Organic Cages. Angewandte Chemie, 2021, 133, 12598-12605.	1.6	7
17	Chiral Metal Nanoparticle Superlattices Enabled by Porphyrinâ€Based Supramolecular Structures. Angewandte Chemie - International Edition, 2021, 60, 14671-14678.	7.2	32
18	Chiral Metal Nanoparticle Superlattices Enabled by Porphyrinâ€Based Supramolecular Structures. Angewandte Chemie, 2021, 133, 14792-14799.	1.6	6

#	Article	IF	CITATIONS
19	Simultaneous Size- and Phase-Controlled Synthesis of Metal Oxide Nanocrystals through Esterification Reactions. Crystal Growth and Design, 2021, 21, 4564-4570.	1.4	4
20	Quantitative evaluation of groundwater and surface water interaction characteristics during a dry season. Water and Environment Journal, 2021, 35, 1348-1361.	1.0	10
21	Self-Assembled Open Porous Nanoparticle Superstructures. Journal of the American Chemical Society, 2021, 143, 11662-11669.	6.6	19
22	CdSe 1D/2D Mixedâ€Dimensional Heterostructures: Curvatureâ€Complementary Selfâ€Assembly for Enhanced Visibleâ€Light Photocatalysis. Small, 2021, 17, 2102047.	5.2	12
23	Effect of humidity on the microstructure and energy storage properties of polyetherimide. Applied Physics Letters, 2021, 119, .	1.5	7
24	Effects of the mechanical response of low-permeability sandstone reservoirs on CO2 geological storage based on laboratory experiments and numerical simulations. Science of the Total Environment, 2021, 796, 149066.	3.9	13
25	Spectrophotometric Determination of p-Nitrophenol under ENP Interference. Journal of Analytical Methods in Chemistry, 2021, 2021, 1-9.	0.7	18
26	Building ordered nanoparticle assemblies inspired by atomic epitaxy. Physical Chemistry Chemical Physics, 2021, 23, 20028-20037.	1.3	1
27	An Electrocatalytic Reaction As a Basis for Chemical Computing in Water Droplets. Journal of the American Chemical Society, 2021, 143, 16908-16912.	6.6	9
28	Shape-Controlled Self-Assembly of Truncated Octahedral Nanocrystals into Supracrystals. Journal of Physical Chemistry C, 2021, 125, 26942-26950.	1.5	2
29	Controlled Synthesis of Au Chiral Propellers from Seeded Growth of Au Nanoplates for Chiral Differentiation of Biomolecules. Journal of Physical Chemistry C, 2020, 124, 24306-24314.	1.5	35
30	Dimensionality-controlled self-assembly of CdSe nanorods into discrete suprastructures within emulsion droplets. New Journal of Chemistry, 2020, 44, 21112-21118.	1.4	1
31	Anisotropic Assembly of Nanocrystal/Molecular Hierarchical Superlattices Decoding from Trisâ€Amide Triarylamines Supramolecular Networks. Small, 2020, 16, 2005701.	5.2	10
32	Colloidal Surface Engineering: Growth of Layered Double Hydroxides with Intrinsic Oxidaseâ€Mimicking Activities to Fight Against Bacterial Infection in Wound Healing. Advanced Healthcare Materials, 2020, 9, e2000092.	3.9	22
33	Intracellular Fate of Hydrophobic Nanocrystal Selfâ€Assemblies in Tumor Cells. Advanced Functional Materials, 2020, 30, 2004274.	7.8	18
34	Discrete Supracrystalline Heterostructures from Integrative Assembly of Nanocrystals and Porous Organic Cages. ACS Nano, 2020, 14, 5517-5528.	7.3	14
35	Faceted Colloidal Au/Fe ₃ O ₄ Binary Supracrystals Dictated by Intrinsic Lattice Structures and Their Collective Optical Properties. Journal of Physical Chemistry C, 2020, 124, 14775-14786.	1.5	14
36	Controlled syntheses of monodispersed metal oxide nanocrystals from bulk metal oxide materials. CrystEngComm, 2020, 22, 4790-4796.	1.3	7

#	Article	IF	CITATIONS
37	Boosting the photocatalytic performances of covalent organic frameworks enabled by spatial modulation of plasmonic nanocrystals. Applied Catalysis B: Environmental, 2020, 272, 119035.	10.8	38
38	Understanding of Long-Term CO ₂ -Brine-Rock Geochemical Reactions Using Numerical Modeling and Natural Analogue Study. Geofluids, 2019, 2019, 1-16.	0.3	10
39	Numerical Simulation of the Influence of Geological CO ₂ Storage on the Hydrodynamic Field of a Reservoir. Geofluids, 2019, 2019, 1-21.	0.3	1
40	A Study on the CO2-Enhanced Water Recovery Efficiency and Reservoir Pressure Control Strategies. Geofluids, 2019, 2019, 1-17.	0.3	5
41	Hierarchical Sheet-on-Sphere Heterostructures as Supports for Metal Nanoparticles: A Robust Catalyst System. Catalysis Letters, 2019, 149, 2492-2499.	1.4	1
42	Dynamic covalent chemistry steers synchronizing nanoparticle self-assembly with interfacial polymerization. Communications Chemistry, 2019, 2, .	2.0	12
43	Stretchable and Reactive Membranes of Metal–Organic Framework Nanosurfactants on Liquid Droplets Enable Dynamic Control of Selfâ€Propulsion, Cargo Pickâ€Up, and Dropâ€Off. Advanced Intelligent Systems, 2019, 1, 1900065.	3.3	5
44	Synthesis of catalytically active bimetallic nanoparticles within solution-processable metal–organic-framework scaffolds. CrystEngComm, 2019, 21, 3954-3960.	1.3	7
45	Buckling of Two-Dimensional Colloidal Nanoplatelets in Confined Space To Design Heterogeneous Catalysts. Chemistry of Materials, 2019, 31, 3812-3817.	3.2	8
46	Light–heat conversion dynamics in highly diversified water-dispersed hydrophobic nanocrystal assemblies. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 8161-8166.	3.3	27
47	A one-pot general strategy towards the synthesis of core–satellite suprastructures. CrystEngComm, 2019, 21, 1335-1339.	1.3	1
48	Do Binary Supracrystals Enhance the Crystal Stability?. Journal of Physical Chemistry C, 2018, 122, 13515-13521.	1.5	6
49	Systems of mechanized and reactive droplets powered by multi-responsive surfactants. Nature, 2018, 553, 313-318.	13.7	162
50	Control and Switching of Charge-Selective Catalysis on Nanoparticles by Counterions. ACS Catalysis, 2018, 8, 7469-7474.	5.5	20
51	Interference-like patterns of static magnetic fields imprinted into polymer/nanoparticle composites. Nature Communications, 2017, 8, 1564.	5.8	18
52	3D superlattices of uniform metal nanocrystals differing by their sizes called binary supracrystals. Europhysics Letters, 2017, 119, 38005.	0.7	3
53	Dispersion of Hydrophobic Co Supracrystal in Aqueous Solution. ACS Nano, 2016, 10, 2277-2286.	7.3	16
54	Thermal Stability of CoAu ₁₃ Binary Nanoparticle Superlattices under the Electron Beam. Chemistry of Materials, 2016, 28, 716-719.	3.2	13

#	Article	IF	CITATIONS
55	Supracrystalline Colloidal Eggs: Epitaxial Growth and Freestanding Three-Dimensional Supracrystals in Nanoscaled Colloidosomes. Journal of the American Chemical Society, 2016, 138, 3493-3500.	6.6	65
56	Hierarchical mechanical behavior of cobalt supracrystals related to nanocrystallinity. Nano Research, 2015, 8, 3480-3487.	5.8	16
57	Engineering the Magnetic Dipolar Interactions in 3D Binary Supracrystals Via Mesoscale Alloying. Advanced Functional Materials, 2015, 25, 4908-4915.	7.8	26
58	Control of the Oxygen and Cobalt Atoms Diffusion through Co Nanoparticles Differing by Their Crystalline Structure and Size. Advanced Functional Materials, 2015, 25, 891-897.	7.8	34
59	Nano Kirkendall Effect Related to Nanocrystallinity of Metal Nanocrystals: Influence of the Outward and Inward Atomic Diffusion on the Final Nanoparticle Structure. Journal of Physical Chemistry C, 2015, 119, 22249-22260.	1.5	47
60	Beyond Entropy: Magnetic Forces Induce Formation of Quasicrystalline Structure in Binary Nanocrystal Superlattices. Journal of the American Chemical Society, 2015, 137, 4487-4493.	6.6	52
61	Metal–Metal Binary Nanoparticle Superlattices: A Case Study of Mixing Co and Ag Nanoparticles. Chemistry of Materials, 2015, 27, 2152-2157.	3.2	18
62	Crystal polymorphism: dependence of oxygen diffusion through 2D ordered Co nanocrystals. Physical Chemistry Chemical Physics, 2014, 16, 9791.	1.3	13
63	Unusual Effect of an Electron Beam on the Formation of Core/Shell (Co/CoO) Nanoparticles Differing by Their Crystalline Structures. Chemistry of Materials, 2013, 25, 2372-2377.	3.2	23
64	Nanocrystallinity and the Ordering of Nanoparticles in Two-Dimensional Superlattices: Controlled Formation of Either Core/Shell (Co/CoO) or Hollow CoO Nanocrystals. ACS Nano, 2013, 7, 1342-1350.	7.3	48
65	A Phase-Solution Annealing Strategy to Control the Cobalt Nanocrystal Anisotropy: Structural and Magnetic Investigations. Journal of Physical Chemistry C, 2012, 116, 15723-15730.	1.5	26
66	Effects of a conversion from grassland to cropland on the different soil organic carbon fractions in Inner Mongolia, China. Journal of Chinese Geography, 2012, 22, 315-328.	1.5	23
67	Formation of catalytically active CeO2 hollow nanoparticles guided by oriented attachment. Materials Letters, 2012, 84, 77-80.	1.3	13
68	Controllable synthesis of Î ³ -AlOOH micro/nanoarchitectures via a one-step solution route. CrystEngComm, 2011, 13, 2445.	1.3	24
69	A mild solution strategy for the synthesis of mesoporous CeO2 nanoflowers derived from Ce(HCOO)3. CrystEngComm, 2011, 13, 4950.	1.3	40
70	Fabrication of three dimensional CeO2 hierarchical structures: Precursor template synthesis, formation mechanism and properties. CrystEngComm, 2011, 13, 2418.	1.3	54
71	Monodisperse CeO ₂ subâ€micro spherical aggregates with controllable building blocks. Crystal Research and Technology, 2011, 46, 201-204.	0.6	4
72	Preparation of CeO2 hollow spheres via a surfactant-assisted solvothermal route. Journal of Materials Science, 2010, 45, 4158-4162.	1.7	12

#	Article	IF	CITATIONS
73	Shape-controlled synthesis of manganese oxide nanoplates by a polyol-based precursor route. Materials Letters, 2010, 64, 891-893.	1.3	24
74	Solvothermal synthesis of In(OH)3 nanorods and their conversion to In2O3. Materials Letters, 2010, 64, 1418-1420.	1.3	15
75	Facile synthesis of MnCO3 hollow dumbbells and their conversion to manganese oxide. Materials Letters, 2010, 64, 2060-2063.	1.3	27
76	Facile hydrothermal synthesis of uniform 3D γâ€AlOOH architectures assembled by nanosheets. Crystal Research and Technology, 2010, 45, 195-198.	0.6	12
77	Hydrothermal synthesis of ultralong singleâ€crystalline αâ€Ni(OH) ₂ nanobelts and corresponding porous NiO nanobelts. Crystal Research and Technology, 2010, 45, 661-666.	0.6	15
78	Mesoporous CeO ₂ Hollow Spheres Prepared by Ostwald Ripening and Their Environmental Applications. European Journal of Inorganic Chemistry, 2010, 2010, 3354-3359.	1.0	110
79	One-pot hydrothermal synthesis of CeO2 hollow microspheres. Journal of Crystal Growth, 2010, 312, 426-430.	0.7	18
80	Fabrication of porous - microflowers by a facile template-free method. Superlattices and Microstructures, 2010, 48, 569-576.	1.4	9
81	The dynamic response of soil respiration to landâ€use changes in subtropical China. Global Change Biology, 2010, 16, 1107-1121.	4.2	162
82	Fabrication of Monodisperse CeO ₂ Hollow Spheres Assembled by Nano-octahedra. Crystal Growth and Design, 2010, 10, 291-295.	1.4	121
83	Hydrothermal synthesis of monodisperse CeO2 nanocubes. Materials Letters, 2009, 63, 1774-1777.	1.3	45
84	Diversifying Nanoparticle Superstructures and Functions Enabled by Translative Templating from Supramolecular Polymerization. Angewandte Chemie, 0, , .	1.6	0