Christophe Durand

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4795414/publications.pdf

Version: 2024-02-01

516215 476904 29 1,485 16 29 citations g-index h-index papers 29 29 29 1670 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	M-Plane Core–Shell InGaN/GaN Multiple-Quantum-Wells on GaN Wires for Electroluminescent Devices. Nano Letters, 2011, 11, 4839-4845.	4.5	186
2	Self-assembled growth of catalyst-free GaN wires by metal–organic vapour phase epitaxy. Nanotechnology, 2010, 21, 015602.	1.3	178
3	Flexible Light-Emitting Diodes Based on Vertical Nitride Nanowires. Nano Letters, 2015, 15, 6958-6964.	4.5	172
4	Integrated Photonic Platform Based on InGaN/GaN Nanowire Emitters and Detectors. Nano Letters, 2014, 14, 3515-3520.	4.5	171
5	Homoepitaxial growth of catalyst-free GaN wires on N-polar substrates. Applied Physics Letters, 2010, 97, .	1.5	113
6	Flexible White Light Emitting Diodes Based on Nitride Nanowires and Nanophosphors. ACS Photonics, 2016, 3, 597-603.	3.2	89
7	Correlation of Microphotoluminescence Spectroscopy, Scanning Transmission Electron Microscopy, and Atom Probe Tomography on a Single Nano-object Containing an InGaN/GaN Multiquantum Well System. Nano Letters, 2014, 14, 107-114.	4.5	70
8	Flexible Photodiodes Based on Nitride Core/Shell p–n Junction Nanowires. ACS Applied Materials & Interfaces, 2016, 8, 26198-26206.	4.0	66
9	Single-Wire Light-Emitting Diodes Based on GaN Wires Containing Both Polar and Nonpolar InGaN/GaN Quantum Wells. Applied Physics Express, 2012, 5, 014101.	1.1	58
10	Light emitting diodes based on GaN core/shell wires grown by MOVPE on n-type Si substrate. Electronics Letters, 2011, 47, 765-767.	0.5	47
11	<i>M</i> -Plane GaN/InAlN Multiple Quantum Wells in Coreâ€"Shell Wire Structure for UV Emission. ACS Photonics, 2014, 1, 38-46.	3.2	42
12	Investigation of Photovoltaic Properties of Single Core–Shell GaN/InGaN Wires. ACS Applied Materials & amp; Interfaces, 2015, 7, 21898-21906.	4.0	39
13	Experimental and theoretical analysis of transport properties of core–shell wire light emitting diodes probed by electron beam induced current microscopy. Nanotechnology, 2014, 25, 255201.	1.3	34
14	Metal organic vapour-phase epitaxy growth of GaN wires on Si (111) for light-emitting diode applications. Nanoscale Research Letters, 2013, 8, 61.	3.1	28
15	Multi-microscopy study of the influence of stacking faults and three-dimensional In distribution on the optical properties of m-plane InGaN quantum wells grown on microwire sidewalls. Applied Physics Letters, 2016, 108, .	1.5	28
16	Green Electroluminescence from Radial <i>m</i> -Plane InGaN Quantum Wells Grown on GaN Wire Sidewalls by Metal–Organic Vapor Phase Epitaxy. ACS Photonics, 2018, 5, 4330-4337.	3.2	26
17	InGaN/GaN core/shell nanowires for visible to ultraviolet range photodetection. Physica Status Solidi (A) Applications and Materials Science, 2016, 213, 936-940.	0.8	18
18	Role of Underlayer for Efficient Core–Shell InGaN QWs Grown on <i>m</i> -plane GaN Wire Sidewalls. ACS Applied Materials & Interfaces, 2020, 12, 19092-19101.	4.0	18

#	Article	IF	CITATIONS
19	UV Emission from GaN Wires with ⟨i>m⟨ i>-Plane Core–Shell GaN AlGaN Multiple Quantum Wells. ACS Applied Materials & amp; Interfaces, 2020, 12, 44007-44016.	4.0	16
20	Comprehensive analyses of core–shell InGaN/GaN single nanowire photodiodes. Journal Physics D: Applied Physics, 2017, 50, 484001.	1.3	14
21	Self-organized and self-catalyst growth of semiconductor and metal wires by vapour phase epitaxy: GaN rods versus Cu whiskers. Comptes Rendus Physique, 2013, 14, 221-227.	0.3	11
22	Carrier dynamics near a crack in GaN microwires with AlGaN multiple quantum wells. Applied Physics Letters, 2020, 117 , .	1.5	10
23	Stretchable Transparent Light-Emitting Diodes Based on InGaN/GaN Quantum Well Microwires and Carbon Nanotube Films. Nanomaterials, 2021, 11, 1503.	1.9	10
24	Thin-Wall GaN/InAlN Multiple Quantum Well Tubes. Nano Letters, 2017, 17, 3347-3355.	4.5	9
25	Colour optimization of phosphor-converted flexible nitride nanowire white light emitting diodes. JPhys Photonics, 2019, 1, 035003.	2.2	9
26	Radiation sensors based on GaN microwires. Journal Physics D: Applied Physics, 2018, 51, 175105.	1.3	8
27	Toward Crack-Free Core–Shell GaN/AlGaN Quantum Wells. Crystal Growth and Design, 2021, 21, 6504-6511.	1.4	7
28	Dualâ€Color Emission from Monolithic <i>m</i> â€Plane Core–Shell InGaN/GaN Quantum Wells. Advanced Photonics Research, 2021, 2, 2000148.	1.7	5
29	Self-powered proton detectors based on GaN core–shell p–n microwires. Applied Physics Letters, 2021, 118, .	1.5	3