
Lingxia Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4795355/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Fabrication of Uniform Magnetic Nanocomposite Spheres with a Magnetic Core/Mesoporous Silica Shell Structure. Journal of the American Chemical Society, 2005, 127, 8916-8917.	6.6	739
2	Brand new P-doped g-C ₃ N ₄ : enhanced photocatalytic activity for H ₂ evolution and Rhodamine B degradation under visible light. Journal of Materials Chemistry A, 2015, 3, 3862-3867.	5.2	497
3	Oxygen Vacancy Generation and Stabilization in CeO _{2–<i>x</i>} by Cu Introduction with Improved CO ₂ Photocatalytic Reduction Activity. ACS Catalysis, 2019, 9, 4573-4581.	5.5	364
4	A pH-responsive mesoporous silica nanoparticles-based multi-drug delivery system for overcoming multi-drug resistance. Biomaterials, 2011, 32, 7711-7720.	5.7	351
5	Mesostructured CeO2/g-C3N4 nanocomposites: Remarkably enhanced photocatalytic activity for CO2 reduction by mutual component activations. Nano Energy, 2016, 19, 145-155.	8.2	349
6	N-doped graphitic carbon-incorporated g-C3N4 for remarkably enhanced photocatalytic H2 evolution under visible light. Carbon, 2016, 99, 111-117.	5.4	343
7	Hollow Mesoporous Organosilica Nanoparticles: A Generic Intelligent Framework-Hybridization Approach for Biomedicine. Journal of the American Chemical Society, 2014, 136, 16326-16334.	6.6	338
8	Highly selective CO ₂ photoreduction to CO over g-C ₃ N ₄ /Bi ₂ WO ₆ composites under visible light. Journal of Materials Chemistry A, 2015, 3, 5189-5196.	5.2	338
9	Construction of Graphitic C ₃ N ₄ -Based Intramolecular Donor–Acceptor Conjugated Copolymers for Photocatalytic Hydrogen Evolution. ACS Catalysis, 2015, 5, 5008-5015.	5.5	293
10	Chitosan derived nitrogen-doped microporous carbons for high performance CO2 capture. Carbon, 2013, 61, 423-430.	5.4	291
11	Largeâ€Pore Ultrasmall Mesoporous Organosilica Nanoparticles: Micelle/Precursor Coâ€ŧemplating Assembly and Nuclearâ€Targeted Gene Delivery. Advanced Materials, 2015, 27, 215-222.	11.1	266
12	A Simple Templateâ€Free Strategy to Synthesize Nanoporous Manganese and Nickel Oxides with Narrow Pore Size Distribution, and Their Electrochemical Properties. Advanced Functional Materials, 2008, 18, 1544-1554.	7.8	254
13	Large Poreâ€Sized Hollow Mesoporous Organosilica for Redoxâ€Responsive Gene Delivery and Synergistic Cancer Chemotherapy. Advanced Materials, 2016, 28, 1963-1969.	11.1	245
14	Multifunctional Mesoporous Nanoellipsoids for Biological Bimodal Imaging and Magnetically Targeted Delivery of Anticancer Drugs. Advanced Functional Materials, 2011, 21, 270-278.	7.8	239
15	2D-2D MnO2/g-C3N4 heterojunction photocatalyst: In-situ synthesis and enhanced CO2 reduction activity. Carbon, 2017, 120, 23-31.	5.4	227
16	An anticancer drug delivery system based on surfactant-templated mesoporous silica nanoparticles. Biomaterials, 2010, 31, 3335-3346.	5.7	205
17	Colloidal HPMO Nanoparticles: Silicaâ€Etching Chemistry Tailoring, Topological Transformation, and Nanoâ€Biomedical Applications. Advanced Materials, 2013, 25, 3100-3105.	11.1	205
18	Colloidal RBCâ€Shaped, Hydrophilic, and Hollow Mesoporous Carbon Nanocapsules for Highly Efficient Biomedical Engineering. Advanced Materials, 2014, 26, 4294-4301.	11.1	196

#	Article	IF	CITATIONS
19	Carbon-vacancy modified graphitic carbon nitride: enhanced CO ₂ photocatalytic reduction performance and mechanism probing. Journal of Materials Chemistry A, 2019, 7, 1556-1563.	5.2	178
20	Layered copper manganese oxide for the efficient catalytic CO and VOCs oxidation. Chemical Engineering Journal, 2019, 357, 258-268.	6.6	178
21	Hollow mesoporous carbon spheres—an excellent bilirubin adsorbent. Chemical Communications, 2009, , 6071.	2.2	173
22	Biocompatibility, MR imaging and targeted drug delivery of a rattle-type magnetic mesoporous silica nanosphere system conjugated with PEG and cancer-cell-specific ligands. Journal of Materials Chemistry, 2011, 21, 3037.	6.7	167
23	A Hollowâ€Core, Magnetic, and Mesoporous Doubleâ€Shell Nanostructure: In Situ Decomposition/Reduction Synthesis, Bioimaging, and Drugâ€Delivery Properties. Advanced Functional Materials, 2011, 21, 1850-1862.	7.8	157
24	Preparation of mesoporous calcium doped silica spheres with narrow size dispersion and their drug loading and degradation behavior. Microporous and Mesoporous Materials, 2007, 102, 151-158.	2.2	153
25	Constructing carbon-nitride-based copolymers via Schiff base chemistry for visible-light photocatalytic hydrogen evolution. Applied Catalysis B: Environmental, 2016, 182, 68-73.	10.8	150
26	Synthesis and Characterization of Bifunctionalized Ordered Mesoporous Materials. Advanced Functional Materials, 2004, 14, 544-552.	7.8	146
27	N-doped hierarchically macro/mesoporous carbon with excellent electrocatalytic activity and durability for oxygen reduction reaction. Carbon, 2015, 86, 108-117.	5.4	145
28	A new thioether functionalized organic–inorganic mesoporous composite as a highly selective and capacious Hg2+ adsorbentElectronic supplementary information (ESI) available: Figs. S1–S3. See http://www.rsc.org/suppdata/cc/b2/b210457a/. Chemical Communications, 2003, , 210-211.	2.2	144
29	Electron Configuration Modulation of Nickel Single Atoms for Elevated Photocatalytic Hydrogen Evolution. Angewandte Chemie - International Edition, 2020, 59, 6827-6831.	7.2	142
30	Template-Free Preparation of Mesoporous Fe ₂ O ₃ and Its Application as Absorbents. Journal of Physical Chemistry C, 2008, 112, 13378-13382.	1.5	140
31	Multifunctional 2D porous g-C3N4 nanosheets hybridized with 3D hierarchical TiO2 microflowers for selective dye adsorption, antibiotic degradation and CO2 reduction. Chemical Engineering Journal, 2020, 396, 125347.	6.6	138
32	Structure-property relationships in manganese oxide - mesoporous silica nanoparticles used for T1-weighted MRI and simultaneous anti-cancer drug delivery. Biomaterials, 2012, 33, 2388-2398.	5.7	135
33	Dual synergetic effects in MoS 2 /pyridine-modified g-C 3 N 4 composite for highly active and stable photocatalytic hydrogen evolution under visible light. Applied Catalysis B: Environmental, 2016, 190, 36-43.	10.8	133
34	Double mesoporous silica shelled spherical/ellipsoidal nanostructures: Synthesis and hydrophilic/hydrophobic anticancer drug delivery. Journal of Materials Chemistry, 2011, 21, 5290.	6.7	128
35	Preparation of multi-amine-grafted mesoporous silicas and their application to heavy metal ions adsorption. Journal of Non-Crystalline Solids, 2007, 353, 4055-4061.	1.5	119
36	Pd-catalyzed instant hydrogenation of TiO ₂ with enhanced photocatalytic performance. Energy and Environmental Science, 2016, 9, 2410-2417.	15.6	116

#	Article	IF	CITATIONS
37	Platinum/Mesoporous WO ₃ as a Carbon-Free Electrocatalyst with Enhanced Electrochemical Activity for Methanol Oxidation. Journal of Physical Chemistry B, 2008, 112, 12024-12031.	1.2	114
38	A post-grafting strategy to modify g-C ₃ N ₄ with aromatic heterocycles for enhanced photocatalytic activity. Journal of Materials Chemistry A, 2016, 4, 13814-13821.	5.2	113
39	Core-shell LaPO4/g-C3N4 nanowires for highly active and selective CO2 reduction. Applied Catalysis B: Environmental, 2017, 201, 629-635.	10.8	109
40	A mesoporous bioactive glass/polycaprolactone composite scaffold and its bioactivity behavior. Journal of Biomedical Materials Research - Part A, 2008, 84A, 84-91.	2.1	105
41	MoS ₂ quantum dot decorated g-C ₃ N ₄ composite photocatalyst with enhanced hydrogen evolution performance. RSC Advances, 2016, 6, 52611-52619.	1.7	100
42	A mesoporous silica nanoparticulate/β-TCP/BG composite drug delivery system for osteoarticular tuberculosis therapy. Biomaterials, 2011, 32, 1986-1995.	5.7	93
43	One-step synthesis of sulfur doped graphene foam for oxygen reduction reactions. Dalton Transactions, 2014, 43, 3420.	1.6	84
44	Highly efficient adsorbents based on hierarchically macro/mesoporous carbon monoliths with strong hydrophobicity. Carbon, 2014, 66, 547-559.	5.4	83
45	Improved photocatalytic activity of g-C ₃ N ₄ derived from cyanamide–urea solution. RSC Advances, 2015, 5, 8323-8328.	1.7	83
46	Facile construction of CuFe ₂ O ₄ /g-C ₃ N ₄ photocatalyst for enhanced visible-light hydrogen evolution. RSC Advances, 2016, 6, 18990-18995.	1.7	80
47	The catalytic oxidation removal of low-concentration HCHO at high space velocity by partially crystallized mesoporous MnO x. Chemical Engineering Journal, 2017, 320, 667-676.	6.6	79
48	Hollow Mesoporous Carbon Spheres with Magnetic Cores and Their Performance as Separable Bilirubin Adsorbents. Chemistry - an Asian Journal, 2009, 4, 1480-1485.	1.7	78
49	Low-temperature formation of nanocrystalline Î ² -SiC with high surface area and mesoporosity via reaction of mesoporous carbon and silicon powder. Microporous and Mesoporous Materials, 2005, 82, 137-145.	2.2	76
50	A facile route to synthesize magnetic particles within hollow mesoporous spheres and their performance as separable Hg2+ adsorbents. Journal of Materials Chemistry, 2008, 18, 2733.	6.7	74
51	Mesoporous bioactive glass-coated poly(l-lactic acid) scaffolds: a sustained antibioticdrug release system for bone repairing. Journal of Materials Chemistry, 2011, 21, 1064-1072.	6.7	74
52	One-step construction of FeOx modified g-C3N4 for largely enhanced visible-light photocatalytic hydrogen evolution. Carbon, 2016, 101, 62-70.	5.4	73
53	Ultrasmall Confined Iron Oxide Nanoparticle MSNs as a pHâ€Responsive Theranostic Platform. Advanced Functional Materials, 2014, 24, 4273-4283.	7.8	66
54	Preparation of chitosan/mesoporous silica nanoparticle composite hydrogels for sustained co-delivery of biomacromolecules and small chemical drugs. Science and Technology of Advanced Materials, 2013, 14, 045005.	2.8	65

#	Article	IF	CITATIONS
55	Preparation of millimetre-sized mesoporous carbon spheres as an effective bilirubin adsorbent and their blood compatibility. Chemical Communications, 2010, 46, 7127.	2.2	64
56	A "Neckâ€Formation―Strategy for an Antiquenching Magnetic/Upconversion Fluorescent Bimodal Cancer Probe. Chemistry - A European Journal, 2010, 16, 11254-11260.	1.7	62
57	In situ formation of silver nanoparticles inside pore channels of ordered mesoporous silica. Materials Letters, 2004, 58, 2152-2156.	1.3	61
58	A salt-assisted acid etching strategy for hollow mesoporous silica/organosilica for pH-responsive drug and gene co-delivery. Journal of Materials Chemistry B, 2015, 3, 766-775.	2.9	61
59	Remarkably enhanced H2 evolution activity of oxidized graphitic carbon nitride by an extremely facile K2CO3-activation approach. Applied Catalysis B: Environmental, 2018, 232, 322-329.	10.8	61
60	Fe-leaching induced surface reconstruction of Ni-Fe alloy on N-doped carbon to boost oxygen evolution reaction. Chemical Engineering Journal, 2020, 394, 124977.	6.6	61
61	Room-temperature catalytic removal of low-concentration NO over mesoporous Fe–Mn binary oxide synthesized using a template-free approach. Applied Catalysis B: Environmental, 2013, 140-141, 42-50.	10.8	59
62	Free-standing composite films of multiple 2D nanosheets: Synergetic photothermocatalysis/photocatalysis for efficient removal of formaldehyde under ambient condition. Chemical Engineering Journal, 2020, 394, 125014.	6.6	58
63	Synthesis of Magnetically Separable Porous Carbon Microspheres and Their Adsorption Properties of Phenol and Nitrobenzene from Aqueous Solution. Journal of Physical Chemistry C, 2008, 112, 8623-8628.	1.5	57
64	PtCo supported on ordered mesoporous carbon as an electrode catalyst for methanol oxidation. Carbon, 2009, 47, 186-194.	5.4	57
65	Electrochemical catalytic activity for the hydrogen oxidation of mesoporous WO3 and WO3/C composites. Journal of Materials Chemistry, 2008, 18, 3575.	6.7	55
66	Layered δ-MnO2 as an active catalyst for toluene catalytic combustion. Applied Catalysis A: General, 2020, 602, 117715.	2.2	55
67	Modified mesoporous silica materials for on-line separation and preconcentration of hexavalent chromium using a microcolumn coupled with flame atomic absorption spectrometry. Analytica Chimica Acta, 2012, 725, 81-86.	2.6	54
68	Converting CO ₂ into fuels by graphitic carbon nitride-based photocatalysts. Nanotechnology, 2018, 29, 412001.	1.3	52
69	Overcoming poisoning effects of heavy metal ions against photocatalysis for synergetic photo-hydrogen generation from wastewater. Nano Energy, 2017, 38, 494-503.	8.2	50
70	Electron Configuration Modulation of Nickel Single Atoms for Elevated Photocatalytic Hydrogen Evolution. Angewandte Chemie, 2020, 132, 6894-6898.	1.6	49
71	Synthesis and Characterization of Uniform Spindle-Shaped Microarchitectures Self-Assembled from Aligned Single-Crystalline Nanowires of Lanthanum Phosphates. Crystal Growth and Design, 2007, 7, 2305-2309.	1.4	46
72	Enhanced Toluene Combustion over Highly Homogeneous Iron Manganese Oxide Nanocatalysts. ACS Applied Nano Materials, 2018, 1, 1066-1075.	2.4	46

Lingxia Zhang

#	Article	IF	CITATIONS
73	Template-free synthesis of mesoporous X–Mn (X = Co, Ni, Zn) bimetal oxides and catalytic application in the room temperature removal of low-concentration NO. Journal of Materials Chemistry A, 2013, 1, 10218.	5.2	44
74	Probing the role of O-containing groups in CO ₂ adsorption of N-doped porous activated carbon. Nanoscale, 2017, 9, 17593-17600.	2.8	44
75	Cu/Mn co-loaded hierarchically porous zeolite beta: a highly efficient synergetic catalyst for soot oxidation. Journal of Materials Chemistry A, 2015, 3, 9745-9753.	5.2	43
76	Preparation of highly ordered Fe-SBA-15 by physical-vapor-infiltration and their application to liquid phase selective oxidation of styrene. Journal of Molecular Catalysis A, 2007, 268, 155-162.	4.8	42
77	An emulsification–solvent evaporation route to mesoporous bioactive glass microspheres for bisphosphonate drug delivery. Journal of Materials Science, 2012, 47, 2256-2263.	1.7	40
78	Synthesis of oxygen-deficient luminescent mesoporous silica nanoparticles for synchronous drug delivery and imaging. Chemical Communications, 2011, 47, 7947.	2.2	38
79	Mild generation of surface oxygen vacancies on CeO ₂ for improved CO ₂ photoreduction activity. Nanoscale, 2020, 12, 12374-12382.	2.8	37
80	New and efficient heterogeneous catalytic system for Heck reaction: palladium colloid layer in situ reduced in the channel of mesoporous silica materials. Applied Catalysis A: General, 2005, 283, 85-89.	2.2	36
81	A photo-excited electron transfer hyperchannel constructed in Pt-dispersed pyrimidine-modified carbon nitride for remarkably enhanced water-splitting photocatalytic activity. Applied Catalysis B: Environmental, 2018, 237, 888-894.	10.8	36
82	Confinement of Cd3P2 nanoparticles inside ordered pore channels in mesoporous silica. Journal of Materials Chemistry, 2003, 13, 399-403.	6.7	35
83	Pt/MnO ₂ nanosheets: facile synthesis and highly efficient catalyst for ethylene oxidation at low temperature. RSC Advances, 2017, 7, 14809-14815.	1.7	35
84	Surfactant-assisted synthesis of Tb(III)-doped cerium phosphate single-crystalline nanorods with enhanced green emission. Applied Physics Letters, 2004, 85, 4307.	1.5	34
85	Particle size, uniformity, and mesostructure control of magnetic core/mesoporous silica shell nanocomposite spheres. Journal of Materials Research, 2006, 21, 3080-3089.	1.2	34
86	One-pot self-assembly of mesoporous silica nanoparticle-based pH-responsive anti-cancer nano drug delivery system. Journal of Materials Chemistry, 2011, 21, 15190.	6.7	34
87	A co-pyrolysis route to synthesize nitrogen doped multiwall carbon nanotubes for oxygen reduction reaction. Carbon, 2014, 68, 232-239.	5.4	34
88	Bi–Sn Oxides for Highly Selective CO ₂ Electroreduction to Formate in a Wide Potential Window. ChemSusChem, 2021, 14, 2247-2254.	3.6	34
89	Exploring the enhancement effects of hetero-metal doping in CeO2 on CO2 photocatalytic reduction performance. Chemical Engineering Journal, 2022, 427, 130987.	6.6	34
90	CoNiFe-LDHs decorated Ta3N5 nanotube array photoanode for remarkably enhanced photoelectrochemical glycerol conversion coupled with hydrogen generation. Nano Energy, 2021, 89, 106326.	8.2	34

#	Article	IF	CITATIONS
91	Amorphous Fe ²⁺ -rich FeO _x loaded in mesoporous silica as a highly efficient heterogeneous Fenton catalyst. Dalton Transactions, 2014, 43, 9234-9241.	1.6	32
92	Polydopamine mediated modification of manganese oxide on melamine sponge for photothermocatalysis of gaseous formaldehyde. Journal of Hazardous Materials, 2021, 407, 124795.	6.5	31
93	MBG/PLGA composite microspheres with prolonged drug release. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2009, 89B, 148-154.	1.6	30
94	On the Mesoporogenâ€Free Synthesis of Singleâ€Crystalline Hierarchically Structured ZSMâ€5 Zeolites in a Quasiâ€Solidâ€State System. Chemistry - A European Journal, 2016, 22, 7895-7905.	1.7	30
95	Highly Efficient and Selective CO ₂ Electroâ€Reduction to HCOOH on Sn Particleâ€Decorated Polymeric Carbon Nitride. ChemSusChem, 2020, 13, 6442-6448.	3.6	30
96	Directed Growth of Well-Aligned Zinc Silicate Nanowires along the Channels of Surfactant-Assembled Mesoporous Silica. Small, 2005, 1, 1044-1047.	5.2	29
97	α-Ferrous oxalate dihydrate: a simple coordination polymer featuring photocatalytic and photo-initiated Fenton oxidations. Science China Materials, 2016, 59, 574-580.	3.5	29
98	One-step synthesis of hydrothermally stable cubic mesoporous aluminosilicates with a novel particle structure. Microporous and Mesoporous Materials, 2003, 60, 51-56.	2.2	28
99	Post-grafting preparation of large-pore mesoporous materials with localized high content titanium doping. Journal of Materials Chemistry, 2005, 15, 661.	6.7	28
100	Surfactant-assisted synthesis of lanthanide phosphates single-crystalline nanowires/nanorods. Journal of Materials Research, 2004, 19, 2807-2811.	1.2	25
101	Facile One-Step Synthesis of Highly Ordered Bimodal Mesoporous Phosphosilicate Monoliths. Journal of the American Chemical Society, 2007, 129, 11878-11879.	6.6	25
102	Facile synthesis of hydrophilic multi-colour and upconversion photoluminescent mesoporous carbon nanoparticles for bioapplications. Chemical Communications, 2014, 50, 15772-15775.	2.2	24
103	Donor–π–acceptor structure between Ag nanoparticles and azobenzenechromophore and its enhanced third-order optical non-linearity. Dalton Transactions, 2009, , 823-831.	1.6	23
104	A Ti-OH bond breaking route for creating oxygen vacancy in titania towards efficient CO2 photoreduction. Chemical Engineering Journal, 2021, 425, 131513.	6.6	23
105	Synthesis of periodic mesoporous organosilicas with chemically active bridging groups and high loadings of thiol groups. Journal of Materials Chemistry, 2007, 17, 4320.	6.7	22
106	Mesostructured amorphous manganese oxides: facile synthesis and highly durable elimination of low-concentration NO at room temperature in air. Chemical Communications, 2015, 51, 5887-5889.	2.2	22
107	Facile Synthesis of Nanoporous Hydroquinone/Catechol Formaldehyde Resins and their Highly Selective, Efficient and Regenerate Reactive Adsorption for Gold Ions. Macromolecular Chemistry and Physics, 2010, 211, 845-853.	1.1	21
108	In-situ carbonization synthesis and ethylene hydrogenation activity of ordered mesoporous tungsten carbide. International Journal of Hydrogen Energy, 2011, 36, 10513-10521.	3.8	21

#	Article	IF	CITATIONS
109	The size modulation of hollow mesoporous carbon spheres synthesized by a simplified hard template route. Materials Letters, 2011, 65, 1-3.	1.3	20
110	KF-loaded mesoporous Mg–Fe bi-metal oxides: high performance transesterification catalysts for biodiesel production. Chemical Communications, 2013, 49, 8006.	2.2	20
111	One-pot synthesis of hierarchically structured ZSM-5 zeolites using single micropore-template. Chinese Journal of Catalysis, 2015, 36, 866-873.	6.9	20
112	Soft-to-hard templating to well-dispersed N-doped mesoporous carbon nanospheres via one-pot carbon/silica source copolymerization. Science Bulletin, 2016, 61, 1195-1201.	4.3	20
113	Hydrothermal Synthesis of Ultraviolet-emitting Cerium Phosphate Single-crystal Nanowires. Chemistry Letters, 2004, 33, 612-613.	0.7	19
114	Carbon impurity-free, novel Mn,N co-doped porous Mo ₂ C nanorods for an efficient and stable hydrogen evolution reaction. Inorganic Chemistry Frontiers, 2019, 6, 2464-2471.	3.0	19
115	Defect Engineering of Photocatalysts towards Elevated CO ₂ Reduction Performance. ChemSusChem, 2021, 14, 2635-2654.	3.6	19
116	Highly Dispersed Gold Nanowires within the Pore Channels of Mesoporous Silica Thin Films Prepared From Organic–Inorganic Hybrid Films Functionalized with Basic Moieties. Chemistry Letters, 2005, 34, 114-115.	0.7	18
117	A Redoxâ€anchoring Approach to Wellâ€dispersed MoC _x /C Nanocomposite for Efficient Electrocatalytic Hydrogen Evolution. Chemistry - an Asian Journal, 2017, 12, 446-452.	1.7	18
118	Thioether moiety functionalization of mesoporous silica films for the encapsulation of highly dispersed gold nanoparticles. Journal of Solid State Chemistry, 2006, 179, 1060-1066.	1.4	17
119	Probing the effect of P-doping in polymeric carbon nitride on CO ₂ photocatalytic reduction. Dalton Transactions, 2020, 49, 15750-15757.	1.6	17
120	One‣tep Hydrothermal Synthesis of Nitrogenâ€Doped Carbon Nanotubes as an Efficient Electrocatalyst for Oxygen Reduction Reactions. Chemistry - an Asian Journal, 2014, 9, 2915-2920.	1.7	16
121	Polymeric carbon nitride supported Bi nanoparticles as highly efficient CO2 reduction electrocatalyst in a wide potential range. Journal of Colloid and Interface Science, 2022, 608, 1676-1684.	5.0	16
122	Metal–organic framework derived carbon supported Cu–In nanoparticles for highly selective CO ₂ electroreduction to CO. Catalysis Science and Technology, 2021, 11, 6096-6102.	2.1	15
123	Hollow Mesoporous Carbon Cubes with High Activity towards the Electrocatalytic Reduction of Oxygen. ChemSusChem, 2015, 8, 623-627.	3.6	14
124	A facile ultrasonic process for the preparation of Co3O4 nanoflowers for room-temperature removal of low-concentration NOx. Catalysis Communications, 2014, 57, 73-77.	1.6	13
125	Niâ€Assisted Low Temperature Synthesis of MoC _x with Enhanced HER Activity. Chemistry - A European Journal, 2017, 23, 17029-17036.	1.7	13
126	3D interconnected nanoporous Ta3N5 films for photoelectrochemical water splitting: thickness-controlled synthesis and insights into stability. Science China Materials, 2021, 64, 1876-1888.	3.5	13

#	Article	IF	CITATIONS
127	FeP modified polymeric carbon nitride as a noble-metal-free photocatalyst for efficient CO2 reduction. Catalysis Communications, 2021, 156, 106326.	1.6	13
128	Probing the morphological effects of ReO _{<i>x</i>} /CeO ₂ catalysts on the CO ₂ hydrogenation reaction. Catalysis Science and Technology, 2022, 12, 1159-1172.	2.1	13
129	Hierarchically macro/mesoporous silica monoliths constructed with interconnecting micrometer-sized unit rods. Journal of Sol-Gel Science and Technology, 2009, 50, 22-27.	1.1	12
130	A facile template-free approach to metal oxide spheres with well-defined nanopore structures. Journal of Materials Science, 2008, 43, 7184-7191.	1.7	10
131	Atomic-scale marriage of light-harvesting and charge-storing components for efficient photoenergy storage catalysis. Nano Energy, 2016, 28, 407-416.	8.2	10
132	A distinctive semiconductor-metalloid heterojunction: unique electronic structure and enhanced CO2 photoreduction activity. Journal of Colloid and Interface Science, 2022, 615, 821-830.	5.0	9
133	Title is missing!. Journal of Materials Chemistry, 2001, 11, 3130-3134.	6.7	8
134	Incorporation of N-Doped Reduced Graphene Oxide into Pyridine-Copolymerized g-C ₃ N ₄ for Greatly Enhanced H ₂ Photocatalytic Evolution. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 2017, 33, 1436-1445.	2.2	8
135	Is black iron oxide nanoparticle always a light absorber?. Journal of Materials Chemistry, 2011, 21, 7990.	6.7	7
136	Computation-Aided Discovery and Synthesis of 2D PrOBr Photocatalyst. ACS Energy Letters, 2022, 7, 1980-1986.	8.8	7
137	A unique route to fabricate mesoporous carbon with abundant ferric species as a heterogeneous Fenton catalyst under neutral conditions. RSC Advances, 2015, 5, 101241-101246.	1.7	5
138	Mesostructured Platinumâ€Free Anode and Carbonâ€Free Cathode Catalysts for Durable Proton Exchange Membrane Fuel Cells. ChemSusChem, 2014, 7, 135-145.	3.6	4
139	A pre-modification-direct synthesis route for the covalent incorporation and monomeric dispersion of hydrophobic organic chromophores in mesoporous silica films. Microporous and Mesoporous Materials, 2008, 111, 150-156.	2.2	3
140	Carbon nanostructures formed on mesoporous silica by catalytic chemical vapor deposition of ethene. Journal of Materials Research, 2008, 23, 435-443.	1.2	2
141	Facile synthesis of superparamagnetic mesoporous zeolite microspheres for the capacious enrichment of enzymes and proteins. Dalton Transactions, 2014, 43, 406-409.	1.6	2
142	PAMAM-SBA-15 Composite in Application of Heavy Metals Ions Adsorption. Wuji Cailiao Xuebao/Journal of Inorganic Materials, 2008, 23, 1231-1235.	0.6	2
143	A Novel Seeding Growth Route to Synthesize Uniform Pt Clusters within Mesoporous Silica by Non-aqueous Electroless Deposition. Chemistry Letters, 2005, 34, 210-211.	0.7	1
144	Synthesis of high surface area and well crystallized mesoporous WC at low temperature with a pore structure collapsed replication route. Journal Wuhan University of Technology, Materials Science Edition, 2011, 26, 105-110.	0.4	1

#	Article	IF	CITATIONS
145	Electronic Structure Regulations of Polymeric Carbon Nitride via Molecular Engineering for Enhanced Photocatalytic Activity. Solar Rrl, 2021, 5, 2100569.	3.1	1
146	Growth of carbon nanotubes with different inner diameter on mesoporous silica. Studies in Surface Science and Catalysis, 2007, 165, 765-768.	1.5	0
147	Synthesis and Properties of Mesoporous-Based Materials for Environmental Applications. , 2007, , 351-400.		0