
Grégoire Witz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4795089/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Phase Evolution in Yttriaâ€&tabilized Zirconia Thermal Barrier Coatings Studied by Rietveld Refinement of Xâ€Ray Powder Diffraction Patterns. Journal of the American Ceramic Society, 2007, 90, 2935-2940.	3.8	171
2	The influence of thermal precompression on the mechanical behaviour of Ag-sheathed (Bi,Pb)2223 tapes with different matrices. Physica C: Superconductivity and Its Applications, 2002, 371, 173-184.	1.2	65
3	Ta2O5–Y2O3–ZrO2 system: Experimental study and preliminary thermodynamic description. Journal of the European Ceramic Society, 2011, 31, 249-257.	5.7	49
4	High-Temperature Photonic Structures. Thermal Barrier Coatings, Infrared Sources and Other Applications. Journal of Computational and Theoretical Nanoscience, 2008, 5, 862-893.	0.4	47
5	High-temperature interaction of yttria stabilized zirconia coatings with CaO–MgO–Al2O3–SiO2 (CMAS) deposits. Surface and Coatings Technology, 2015, 265, 244-249.	4.8	44
6	Reduced filament coupling in Bi(2223)/BaZrO3/Ag composite tapes. Physica C: Superconductivity and Its Applications, 1998, 310, 127-131.	1.2	35
7	Thermal conductivity of porous structures. Physical Review B, 2007, 75, .	3.2	34
8	ac Losses in Bi,Pb(2223) barrier tapes. Cryogenics, 2001, 41, 97-101.	1.7	24
9	Properties of the plasma channel in liquid discharges inferred from cathode local temperature measurements. Journal of Applied Physics, 2005, 98, 113305.	2.5	23
10	Development of Bi(2223) Multifilamentary Tapes with Low ac Losses. Journal of Superconductivity and Novel Magnetism, 1998, 11, 495-505.	0.5	21
11	Engineering the precompression of Bi,Pb(2223): the influence of the geometry of the metallic matrix on the mechanical properties of tapes. IEEE Transactions on Applied Superconductivity, 2001, 11, 3018-3021.	1.7	18
12	Hot isostatic pressure reaction treatment of Ag-sheathed Bi,Pb(2223) tapes. Physica C: Superconductivity and Its Applications, 2002, 372-376, 980-983.	1.2	14
13	Local temperature response to pulsed discharges in electronic discharge machining (EDM) environment. IEEE Transactions on Plasma Science, 2005, 33, 1066-1071.	1.3	14
14	Fabrication of square and round Ag/Bi(2223) wires and their ac loss behaviour. Superconductor Science and Technology, 2002, 15, 1184-1189.	3.5	8
15	Oxide barriers and their effect on AC losses of Bi,Pb(2223) multifilamentary tapes. IEEE Transactions on Applied Superconductivity, 1999, 9, 1173-1176.	1.7	7
16	Geometry dependence of 50 Hz alternating magnetic field losses in superconducting multifilament Bi(2223)/Ag tapes. Physica C: Superconductivity and Its Applications, 2001, 355, 325-334.	1.2	7
17	Partial melting and HIP processing of Bi(2223): bulk and tapes. IEEE Transactions on Applied Superconductivity, 2003, 13, 3008-3013.	1.7	7
18	Current transfer lengths in multifilamentary superconductors with composite sheath materials. IEEE Transactions on Applied Superconductivity, 1999, 9, 1093-1096.	1.7	6

GRéGOIRE WITZ

#	Article	IF	CITATIONS
19	The formation mechanism of Bi,Pb(2223) outgrowths in multi-filamentary tapes. IEEE Transactions on Applied Superconductivity, 2001, 11, 3557-3560.	1.7	6
20	Effects of filament arrangement and wire geometry on the AC losses in Bi(2223) tapes. IEEE Transactions on Applied Superconductivity, 1999, 9, 782-784.	1.7	5
21	Development of Advanced Thermal Barrier Coatings With Improved Temperature Capability. Journal of Engineering for Gas Turbines and Power, 2017, 139, .	1.1	5
22	AC transport and magnetic characterisation of multifilamentary Ag-BSCCO(2223) tapes with different filament arrangements. Physica C: Superconductivity and Its Applications, 1998, 310, 177-181.	1.2	4
23	Interaction of Bi, Pb(2223) precursors with metal zirconates. Superconductor Science and Technology, 1999, 12, 411-416.	3.5	4
24	Two axial rolling of Bi,Pb(2223) tapes under longitudinal stress. Physica C: Superconductivity and Its Applications, 2001, 357-360, 1119-1122.	1.2	4
25	Square and round Bi(2223) wire configurations and their AC losses. Physica C: Superconductivity and Its Applications, 2002, 372-376, 942-944.	1.2	4
26	Determination of Thermal Barrier Coatings Average Surface Temperature After Engine Operation for Lifetime Validation. Journal of Engineering for Gas Turbines and Power, 2012, 134, .	1.1	4
27	Burner Rig Testing of Thermal Barrier Coatings for Lifetime Prediction. , 2014, , .		4
28	Enhancing the engineering J/sub c/ of Bi-2223 multifilamentary tapes by two-axial rolling and periodic pressing. IEEE Transactions on Applied Superconductivity, 1999, 9, 2722-2725.	1.7	3
29	Improved J/sub c/ of multifilamentary Bi,Pb(2223)/Ag tapes by periodic pressing. IEEE Transactions on Applied Superconductivity, 1999, 9, 2521-2524.	1.7	3
30	Reduction of AC losses in Bi,Pb(2223) tapes by the introduction of barriers and the use of new wire configurations. Physica C: Superconductivity and Its Applications, 2002, 372-376, 1814-1817.	1.2	3
31	Effect of thermo-capillary (Marangoni) convection in Electronic Discharge Machining (EDM). High Temperature Material Processes, 2007, 11, 115-124.	0.6	3
32	Self-Field AC Losses on Ag-BSCCO(2223) Multifilamentary Tapes with Different Filament Arrangements. International Journal of Modern Physics B, 1999, 13, 1327-1332.	2.0	2
33	Probabilistic Lifetime Prediction of Thermal Barrier Coating Systems Depending on Manufacturing Scatter. , 2014, , .		2
34	AC losses in Bi,Pb() multifilamentary wires with square cross-section. Physica C: Superconductivity and Its Applications, 2003, 384, 334-344.	1.2	1
35	Evolution of Thermal Barrier Coating Strain Tolerance During Engine Operation and its Application to Lifing Models. , 2012, , .		1
36	Development of Advanced Thermal Barrier Coatings With Improved Temperature Capability. , 2016, , .		1

3

GRéGOIRE WITZ

#	Article	IF	CITATIONS
37	Deformation of Bi,Pb(2223) tapes with two axial rolling under longitudinal stress: influence on microstructure. IEEE Transactions on Applied Superconductivity, 2001, 11, 3744-3747.	1.7	0
38	ac losses in Bi, Pb(2223) tapes before and after etching the Ag sheath. Superconductor Science and Technology, 2004, 17, 532-536.	3.5	0
39	Modeling of the Discharge-Sample Interaction in the Electron Discharge Machining (EDM) Process. IEEE International Conference on Plasma Science, 2005, , .	0.0	Ο
40	Determination of Thermal Barrier Coatings Average Surface Temperature After Engine Operation for Lifetime Validation. , 2012, , .		0