Lianke Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4794902/publications.pdf Version: 2024-02-01

LIANKE WANG

#	Article	IF	CITATIONS
1	Molecular engineering of covalent organic frameworks with elevated mitochondrial-targeting for cancer cell suppression. Sensors and Actuators B: Chemical, 2022, 350, 130861.	7.8	5
2	Facile construction of olefin-linked covalent organic frameworks for enhanced photocatalytic organic transformation <i>via</i> wall surface engineering. Journal of Materials Chemistry A, 2022, 10, 7165-7172.	10.3	19
3	A new bis(thioether)-dipyrrin N ₂ S ₂ ligand and its coordination behaviors to nickel, copper and zinc. Dalton Transactions, 2022, 51, 9699-9707.	3.3	1
4	Cancer Cell Membrane Labeling Fluorescent Doppelganger Enables In Situ Photoactivated Membrane Dynamics Tracking via Two-Photon Fluorescence Imaging Microscopy. Analytical Chemistry, 2022, 94, 8373-8381.	6.5	4
5	Polarity-Sensitive Probe: Dual-Channel Visualization of the "Chameleon―Migration with the Assistance of Reactive Oxygen Species. ACS Applied Bio Materials, 2022, 5, 3554-3562.	4.6	2
6	Defective transition metal hydroxide-based nanoagents with hypoxia relief for photothermal-enhanced photodynamic therapy. Journal of Materials Chemistry B, 2021, 9, 1018-1029.	5.8	11
7	An [FeFe]â€Hydrogenase Mimic Immobilized through Simple Physiadsorption and Active for Aqueous H ₂ Production. ChemElectroChem, 2021, 8, 1674-1677.	3.4	9
8	Self-Monitoring the Endo-Lysosomal Escape and Near-Infrared-Activated Mitophagy To Guide Synergistic Type-I Photodynamic and Photothermal Therapy. Analytical Chemistry, 2021, 93, 12059-12066.	6.5	25
9	Real-time imaging mitochondrial viscosity dynamic during mitophagy mediated by photodynamic therapy. Analytica Chimica Acta, 2021, 1178, 338847.	5.4	16
10	Diversified photo-energy conversion based on single-molecule FRET to realize enhanced phototheranostics. Materials Chemistry Frontiers, 2021, 5, 8229-8237.	5.9	1
11	Lamellar Metal Oxide Based Nanoagent Realizing Intensive Interlamellar Ca2+ Release and Hypoxia Relief for Enhanced Synergistic Therapy. ACS Applied Bio Materials, 2021, 4, 7993-8003.	4.6	1
12	Role of the Metal Ion in Bio-Inspired Hydrogenase Models: Investigation of a Homodinuclear FeFe Complex vs Its Heterodinuclear NiFe Analogue. ACS Catalysis, 2020, 10, 177-186.	11.2	19
13	A NIR-I light-responsive superoxide radical generator with cancer cell membrane targeting ability for enhanced imaging-guided photodynamic therapy. Chemical Science, 2020, 11, 10279-10286.	7.4	63
14	Tuning the hydrophobicity of pyridinium-based probes to realize the mitochondria-targeted photodynamic therapy and mitophagy tracking. Sensors and Actuators B: Chemical, 2020, 321, 128460.	7.8	27
15	In Situ Monitoring of Mitochondria Regulating Cell Viability by the RNA-Specific Fluorescent Photosensitizer. Analytical Chemistry, 2020, 92, 10815-10821.	6.5	15
16	O ₂ Activation by Non-Heme Thiolate-Based Dinuclear Fe Complexes. Inorganic Chemistry, 2020, 59, 3249-3259.	4.0	17
17	A Non-Heme Diiron Complex for (Electro)catalytic Reduction of Dioxygen: Tuning the Selectivity through Electron Delivery. Journal of the American Chemical Society, 2019, 141, 8244-8253.	13.7	56
18	Experimental and Theoretical Identification of the Origin of Magnetic Anisotropy in Intermediate Spin Iron(III) Complexes. Chemistry - A European Journal, 2018, 24, 5091-5094.	3.3	11

LIANKE WANG

#	Article	IF	CITATIONS
19	Tuning Reactivity of Bioinspired [NiFe]-Hydrogenase Models by Ligand Design and Modeling the CO Inhibition Process. ACS Catalysis, 2018, 8, 10658-10667.	11.2	47
20	Hydrogen Evolution from Aqueous Solutions Mediated by a Heterogenized [NiFe]â€Hydrogenase Model: Low pH Enables Catalysis through an Enzymeâ€Relevant Mechanism. Angewandte Chemie - International Edition, 2018, 57, 16001-16004.	13.8	45
21	Solvent―and Halideâ€Induced (Inter)conversion between Iron(II)â€Disulfide and Iron(III)â€Thiolate Complexes. Chemistry - A European Journal, 2018, 24, 11973-11982.	3.3	19
22	Crystal structures of benzoxazolyl–copper(iii,ii,i) complexes and investigation of Cu(ii)-mediated aryl carbon–hydrogen bromination. Dalton Transactions, 2015, 44, 9921-9926.	3.3	4
23	Influence of anions on decomposition of Schiff base ligand determines the structure and magnetic property of dinuclear copper(II) complexes. Polyhedron, 2015, 100, 326-332.	2.2	3
24	Novel highly emissive H-aggregates with aggregate fluorescence change in a phenylbenzoxazole-based system. Chemical Communications, 2014, 50, 8723-8726.	4.1	58
25	Systematic Study and Imaging Application of Aggregation-Induced Emission of Ester-Isophorone Derivatives. Journal of Physical Chemistry C, 2014, 118, 8531-8540.	3.1	29
26	Schiff base particles with aggregation-induced enhanced emission: random aggregation preventing ï€â€"Ï€ stacking. Journal of Materials Chemistry C, 2013, 1, 6952.	5.5	59
27	Photon-induced intramolecular charge transfer with the influence of D/A group and mode: optical physical properties and bio-imaging. Journal of Materials Chemistry C, 2013, 1, 7026.	5.5	21