Carolina Carrillo-Carrion

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4794834/publications.pdf

Version: 2024-02-01

68 3,657 29 59 papers citations h-index g-index

69 69 69 6623
all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Exploring the potential of biomass-templated Nb/ZnO nanocatalysts for the sustainable synthesis of N-heterocycles. Catalysis Today, 2021, 368, 243-249.	4.4	8
2	Photodynamic therapy: photosensitizers and nanostructures. Materials Chemistry Frontiers, 2021, 5, 3788-3812.	5.9	92
3	Metal doping of porous materials <i>via</i> a post-synthetic mechano-chemical approach: a general route to design low-loaded versatile catalytic systems. Catalysis Science and Technology, 2021, 11, 2103-2109.	4.1	2
4	Rapid, Effective, and Versatile Extraction of Gluten in Food with Application on Different Immunological Methods. Foods, 2021, 10, 652.	4.3	8
5	Mechanochemical Synthesis of Nickel-Modified Metal–Organic Frameworks for Reduction Reactions. Catalysts, 2021, 11, 526.	3.5	7
6	Exploiting the Potential of Biosilica from Rice Husk as Porous Support for Catalytically Active Iron Oxide Nanoparticles. Nanomaterials, 2021, 11, 1259.	4.1	10
7	Lignin, lipid, protein, hyaluronic acid, starch, cellulose, gum, pectin, alginate and chitosan-based nanomaterials for cancer nanotherapy: Challenges and opportunities. International Journal of Biological Macromolecules, 2021, 178, 193-228.	7. 5	51
8	Selectivity Control in the Oxidative Ring-Opening of Dimethylfuran Mediated by Zeolitic-Imidazolate Framework-8 Nanoparticles. ACS Sustainable Chemistry and Engineering, 2021, 9, 8090-8096.	6.7	4
9	In Vitro Cellular Uptake Studies of Self-Assembled Fluorinated Nanoparticles Labelled with Antibodies. Nanomaterials, 2021, 11, 1906.	4.1	1
10	Molecular Bottom-Up Approaches for the Synthesis of Inorganic and Hybrid Nanostructures. Inorganics, 2021, 9, 58.	2.7	15
11	Plasmonic-Assisted Thermocyclizations in Living Cells Using Metal–Organic Framework Based Nanoreactors. ACS Nano, 2021, 15, 16924-16933.	14.6	20
12	Nanoscale metal–organic frameworks as key players in the context of drug delivery: evolution toward theranostic platforms. Analytical and Bioanalytical Chemistry, 2020, 412, 37-54.	3.7	35
13	Biodegradation of Bi-Labeled Polymer-Coated Rare-Earth Nanoparticles in Adherent Cell Cultures. Chemistry of Materials, 2020, 32, 245-254.	6.7	16
14	Nanoparticle behavior and stability in biological environments. , 2020, , 5-18.		7
15	Core-shell iron oxide@cathecol-polymer@palladium/copper nanocomposites as efficient and sustainable catalysts in cross-coupling reactions. Molecular Catalysis, 2020, 493, 111042.	2.0	6
16	Toward Diffusion Measurements of Colloidal Nanoparticles in Biological Environments by Nuclear Magnetic Resonance. Small, 2020, 16, e2001160.	10.0	15
17	Core-Shell Palladium/MOF Platforms as Diffusion-Controlled Nanoreactors in Living Cells and Tissue Models. Cell Reports Physical Science, 2020, 1, 100076.	5.6	35
18	Aqueous stable luminescent perovskite-polymer composites. Applied Materials Today, 2019, 15, 562-569.	4.3	13

#	Article	IF	CITATIONS
19	Aqueous Stable Gold Nanostar/ZIFâ€8 Nanocomposites for Lightâ€Triggered Release of Active Cargo Inside Living Cells. Angewandte Chemie - International Edition, 2019, 58, 7078-7082.	13.8	103
20	Triple-Labeling of Polymer-Coated Quantum Dots and Adsorbed Proteins for Tracing their Fate in Cell Cultures. ACS Nano, 2019, 13, 4631-4639.	14.6	46
21	Aqueous Stable Gold Nanostar/ZIFâ€8 Nanocomposites for Lightâ€Triggered Release of Active Cargo Inside Living Cells. Angewandte Chemie, 2019, 131, 7152-7156.	2.0	15
22	Fluorinated CdSe/ZnS quantum dots: Interactions with cell membrane. Colloids and Surfaces B: Biointerfaces, 2019, 173, 148-154.	5.0	8
23	Surfaceâ€Active Fluorinated Quantum Dots for Enhanced Cellular Uptake. Chemistry - A European Journal, 2019, 25, 195-199.	3.3	10
24	Taking Advantage of Hydrophobic Fluorine Interactions for Selfâ€Assembled Quantum Dots as a Delivery Platform for Enzymes. Angewandte Chemie, 2018, 130, 5127-5130.	2.0	8
25	Taking Advantage of Hydrophobic Fluorine Interactions for Selfâ€Assembled Quantum Dots as a Delivery Platform for Enzymes. Angewandte Chemie - International Edition, 2018, 57, 5033-5036.	13.8	38
26	Cyclodextrin-modified nanodiamond for the sensitive fluorometric determination of doxorubicin in urine based on its differential affinity towards $\hat{l}^2\hat{l}^3$ -cyclodextrins. Mikrochimica Acta, 2018, 185, 115.	5.0	19
27	Study of Fluorinated Quantum Dots-Protein Interactions at the Oil/Water Interface by Interfacial Surface Tension Changes. Materials, 2018, 11, 750.	2.9	5
28	Detection of gluten immunogenic peptides in the urine of patients with coeliac disease reveals transgressions in the gluten-free diet and incomplete mucosal healing. Gut, 2017, 66, 250-257.	12.1	233
29	Novel fluorinated ligands for gold nanoparticle labelling with applications in $\langle \sup 19 \langle \sup F-MRI \rangle$. Chemical Communications, 2017, 53, 2447-2450.	4.1	18
30	Techniques for the experimental investigation of the protein corona. Current Opinion in Biotechnology, 2017, 46, 106-113.	6.6	126
31	Selected Standard Protocols for the Synthesis, Phase Transfer, and Characterization of Inorganic Colloidal Nanoparticles. Chemistry of Materials, 2017, 29, 399-461.	6.7	233
32	In situ detection of the protein corona in complex environments. Nature Communications, 2017, 8, 1542.	12.8	117
33	Multiplexed Fluorophore-Nanoparticle Hybrids for Extending the Range of pH Measurements. Small Methods, 2017, 1, 1700153.	8.6	9
34	Rare earth based nanostructured materials: synthesis, functionalization, properties and bioimaging and biosensing applications. Nanophotonics, 2017, 6, 881-921.	6.0	137
35	Synthesis and functionalization of monodisperse near-ultraviolet and visible excitable multifunctional Eu ³⁺ , Bi ³⁺ :REVO ₄ nanophosphors for bioimaging and biosensing applications. Nanoscale, 2016, 8, 12221-12236.	5.6	56
36	Luminescent Rare-earth-based Nanoparticles: A Summarized Overview of their Synthesis, Functionalization, and Applications. Topics in Current Chemistry, 2016, 374, 48.	5.8	47

#	Article	IF	CITATIONS
37	Optical sensing by integration of analyte-sensitive fluorophore to particles. TrAC - Trends in Analytical Chemistry, 2016, 84, 84-96.	11.4	11
38	Design of pyridyl-modified amphiphilic polymeric ligands: Towards better passivation of water-soluble colloidal quantum dots for improved optical performance. Journal of Colloid and Interface Science, 2016, 478, 88-96.	9.4	17
39	One-Step Synthesis and Characterization of N-Doped Carbon Nanodots for Sensing in Organic Media. Analytical Chemistry, 2016, 88, 3178-3185.	6.5	39
40	Luminescent rare earth vanadate nanoparticles doped with Eu ³⁺ and Bi ³ for sensing and imaging applications. Proceedings of SPIE, 2016, , .	0.8	4
41	Förster resonance energy transfer mediated enhancement of the fluorescence lifetime of organic fluorophores to the millisecond range by coupling to Mn-doped CdS/ZnS quantum dots. Nanotechnology, 2016, 27, 055101.	2.6	15
42	Determination of the ratio of fluorophore/nanoparticle for fluorescence-labelled nanoparticles. Analyst, The, 2016, 141, 1266-1272.	3.5	9
43	Gold-Based Nanomaterials for Applications in Nanomedicine. Topics in Current Chemistry, 2016, 370, 169-202.	4.0	56
44	Semiconductor and carbon-based fluorescent nanodots: the need for consistency. Chemical Communications, 2016, 52, 1311-1326.	4.1	389
45	Determining the exact number of dye molecules attached to colloidal CdSe/ZnS quantum dots in Förster resonant energy transfer assemblies. Journal of Applied Physics, 2015, 117, 024701.	2.5	20
46	Particle-Based Optical Sensing of Intracellular Ions at the Example of Calcium - What Are the Experimental Pitfalls?. Small, 2015, 11, 896-904.	10.0	27
47	Water dispersible upconverting nanoparticles: effects of surface modification on their luminescence and colloidal stability. Nanoscale, 2015, 7, 1403-1410.	5.6	210
48	Fluorescence-based ion-sensing with colloidal particles. Current Opinion in Pharmacology, 2014, 18, 98-103.	3. 5	8
49	Analytical strategies based on quantum dots for heavy metal ions detection. Journal of Biomedical Optics, 2014, 19, 101503.	2.6	78
50	Metal ions in the context of nanoparticles toward biological applications. Current Opinion in Chemical Engineering, 2014, 4, 88-96.	7.8	28
51	Interaction of colloidal nanoparticles with their local environment: the (ionic) nanoenvironment around nanoparticles is different from bulk and determines the physico-chemical properties of the nanoparticles. Journal of the Royal Society Interface, 2014, 11, 20130931.	3.4	308
52	Determination of TNT explosive based on its selectively interaction with creatinine-capped CdSe/ZnS quantum dots. Analytica Chimica Acta, 2013, 792, 93-100.	5.4	42
53	(CdSe/ZnS QDs)-ionic liquid-based headspace single drop microextraction for the fluorimetric determination of trimethylamine in fish. Analyst, The, 2012, 137, 1152.	3 . 5	29
54	Quantification of DNT isomers by capillary liquid chromatography using at-line SERS detection or multivariate analysis of SERS spectra of DNT isomer mixtures. Journal of Raman Spectroscopy, 2012, 43, 998-1002.	2.5	12

#	Article	IF	Citations
55	Determination of pesticides by capillary chromatography and SERS detection using a novel Silver-Quantum dots "sponge―nanocomposite. Journal of Chromatography A, 2012, 1225, 55-61.	3.7	29
56	Calix[8]arene Coated CdSe/ZnS Quantum Dots as C ₆₀ -Nanosensor. Analytical Chemistry, 2011, 83, 8093-8100.	6.5	37
57	Determination of amines based on their interaction with QDs: Effect of the formation QD-assemblies. Analytica Chimica Acta, 2011, 703, 212-218.	5.4	3
58	Capillary Electrophoresis Method for the Characterization and Separation of CdSe Quantum Dots. Analytical Chemistry, 2011, 83, 2807-2813.	6.5	38
59	Colistin-functionalised CdSe/ZnS quantum dots as fluorescent probe for the rapid detection of Escherichia coli. Biosensors and Bioelectronics, 2011, 26, 4368-4374.	10.1	60
60	Determination of Pyrimidine and Purine Bases by Reversed-Phase Capillary Liquid Chromatography with At-Line Surface-Enhanced Raman Spectroscopic Detection Employing a Novel SERS Substrate Based on ZnS/CdSe Silver–Quantum Dots. Analytical Chemistry, 2011, 83, 9391-9398.	6.5	43
61	Rapid fluorescence determination of diquat herbicide in food grains using quantum dots as new reducing agent. Analytica Chimica Acta, 2011, 692, 103-108.	5.4	24
62	Carbon nanotube–quantum dot nanocomposites as new fluorescence nanoparticles for the determination of trace levels of PAHs in water. Analytica Chimica Acta, 2009, 652, 278-284.	5.4	30
63	Quantum dots luminescence enhancement due to illumination with UV/Vis light. Chemical Communications, 2009, , 5214.	4.1	282
64	Selective Quantification of Carnitine Enantiomers Using Chiral Cysteine-Capped CdSe(ZnS) Quantum Dots. Analytical Chemistry, 2009, 81, 4730-4733.	6.5	107
65	Surfactant-coated carbon nanotubes as pseudophases in liquid–liquid extraction. Analyst, The, 2007, 132, 551-559.	3 . 5	45
66	Vanguard/rearguard strategy for the evaluation of the degradation of yoghurt samples based on the direct analysis of the volatiles profile through headspace-gas chromatography–mass spectrometry. Journal of Chromatography A, 2007, 1141, 98-105.	3.7	22
67	Principles of qualitative analysis in the chromatographic context. Journal of Chromatography A, 2007, 1158, 234-240.	3.7	15
68	Liquid–liquid extraction/headspace/gas chromatographic/mass spectrometric determination of benzene, toluene, ethylbenzene, (o-, m- and p-)xylene and styrene in olive oil using surfactant-coated carbon nanotubes as extractant. Journal of Chromatography A, 2007, 1171, 1-7.	3.7	46