
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4794797/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	THE SEVENTH DATA RELEASE OF THE SLOAN DIGITAL SKY SURVEY. Astrophysical Journal, Supplement Series, 2009, 182, 543-558.	7.7	4,201
2	SDSS-III: MASSIVE SPECTROSCOPIC SURVEYS OF THE DISTANT UNIVERSE, THE MILKY WAY, AND EXTRA-SOLAR PLANETARY SYSTEMS. Astronomical Journal, 2011, 142, 72.	4.7	1,700
3	THE BARYON OSCILLATION SPECTROSCOPIC SURVEY OF SDSS-III. Astronomical Journal, 2013, 145, 10.	4.7	1,571
4	MASS AND ENVIRONMENT AS DRIVERS OF GALAXY EVOLUTION IN SDSS AND zCOSMOS AND THE ORIGIN OF THE SCHECHTER FUNCTION. Astrophysical Journal, 2010, 721, 193-221.	4.5	1,485
5	THE EIGHTH DATA RELEASE OF THE SLOAN DIGITAL SKY SURVEY: FIRST DATA FROM SDSS-III. Astrophysical Journal, Supplement Series, 2011, 193, 29.	7.7	1,166
6	The Hyper Suprime-Cam SSP Survey: Overview and survey design. Publication of the Astronomical Society of Japan, 2018, 70, .	2.5	566
7	THE zCOSMOS 10k-BRIGHT SPECTROSCOPIC SAMPLE. Astrophysical Journal, Supplement Series, 2009, 184, 218-229.	7.7	481
8	The Hyper Suprime-Cam software pipeline. Publication of the Astronomical Society of Japan, 2018, 70, .	2.5	346
9	First data release of the Hyper Suprime-Cam Subaru Strategic Program. Publication of the Astronomical Society of Japan, 2018, 70, .	2.5	327
10	Second data release of the Hyper Suprime-Cam Subaru Strategic Program. Publication of the Astronomical Society of Japan, 2019, 71, .	2.5	320
11	PHOTOMETRIC RESPONSE FUNCTIONS OF THE SLOAN DIGITAL SKY SURVEY IMAGER. Astronomical Journal, 2010, 139, 1628-1648.	4.7	303
12	Hyper Suprime-Cam: System design and verification of image quality. Publication of the Astronomical Society of Japan, 2018, 70, .	2.5	289
13	An updated analytic model for attenuation by the intergalactic medium. Monthly Notices of the Royal Astronomical Society, 2014, 442, 1805-1820.	4.4	265
14	Photometric redshifts for Hyper Suprime-Cam Subaru Strategic Program Data Release 1. Publication of the Astronomical Society of Japan, 2018, 70, .	2.5	216
15	The Environmental Dependence of Galaxy Properties in the Local Universe: Dependences on Luminosity, Local Density, and System Richness. Astronomical Journal, 2004, 128, 2677-2695.	4.7	176
16	SUBARU HIGH-z EXPLORATION OF LOW-LUMINOSITY QUASARS (SHELLQs). I. DISCOVERY OF 15 QUASARS AND BRIGHT GALAXIES AT 5.7 < z < 6.9 ^{â^—} â€. Astrophysical Journal, 2016, 828, 26.	4.5	164
17	Great Optically Luminous Dropout Research Using Subaru HSC (GOLDRUSH). I. UV luminosity functions at <i>z</i> â^¼ 4–7 derived with the half-million dropouts on the 100Âdeg2 sky. Publication of the Astronomical Society of Japan, 2018, 70, .	2.5	164
18	Subaru High-z Exploration of Low-luminosity Quasars (SHELLQs). V. Quasar Luminosity Function and Contribution to Cosmic Reionization at zÂ=Â6. Astrophysical Journal, 2018, 869, 150.	4.5	153

#	Article	IF	CITATIONS
19	SILVERRUSH. III. Deep optical and near-infrared spectroscopy for Lyα and UV-nebular lines of bright Lyα emitters at <i>z</i> Â=Â6–7. Publication of the Astronomical Society of Japan, 2018, 70, .	2.5	119
20	Quiescent Galaxies 1.5 Billion Years after the Big Bang and Their Progenitors. Astrophysical Journal, 2020, 889, 93.	4.5	117
21	Third data release of the Hyper Suprime-Cam Subaru Strategic Program. Publication of the Astronomical Society of Japan, 2022, 74, 247-272.	2.5	117
22	PHOTOMETRIC REDSHIFT WITH BAYESIAN PRIORS ON PHYSICAL PROPERTIES OF GALAXIES. Astrophysical Journal, 2015, 801, 20.	4.5	114
23	Discovery of the First Low-luminosity Quasar at zÂ>Â7. Astrophysical Journal Letters, 2019, 872, L2.	8.3	114
24	Evidence for a change in the dominant satellite galaxy quenching mechanism at <i>z</i> Â=Â1. Monthly Notices of the Royal Astronomical Society, 2016, 456, 4364-4376.	4.4	98
25	Subaru High- <i>z</i> Exploration of Low-Luminosity Quasars (SHELLQs). II. Discovery of 32 quasars and luminous galaxies at 5.7Â<Â <i>z</i> ≤6.8. Publication of the Astronomical Society of Japan, 2018, 70, .	2.5	95
26	Subaru High-z Exploration of Low-luminosity Quasars (SHELLQs). VI. Black Hole Mass Measurements of Six Quasars at 6.1Ââ‰ÅzÂâ‰Å6.7. Astrophysical Journal, 2019, 880, 77.	4.5	90
27	Direct observational evidence for a large transient galaxy population in groups at 0.85 < z < 1. Monthly Notices of the Royal Astronomical Society, 2011, 412, 2303-2317.	4.4	85
28	An optically-selected cluster catalog at redshift 0.1Â<Â <i>z</i> Â<Â1.1 from the Hyper Suprime-Cam Subaru Strategic Program S16A data. Publication of the Astronomical Society of Japan, 2018, 70, .	2.5	85
29	Massive starburst galaxies in a z = 2.16 proto-cluster unveiled by panoramic Hα mapping. Monthly Notices of the Royal Astronomical Society, 2013, 428, 1551-1564.	4.4	82
30	Subaru High-z Exploration of Low-luminosity Quasars (SHELLQs). IV. Discovery of 41 Quasars and Luminous Galaxies at 5.7Ââ‰ÅzÂâ‰Å6.9. Astrophysical Journal, Supplement Series, 2018, 237, 5.	7.7	81
31	Characterization and photometric performance of the Hyper Suprime-Cam Software Pipeline. Publication of the Astronomical Society of Japan, 2018, 70, .	2.5	80
32	Individual stellar haloes of massive galaxies measured to 100 kpc at 0.3Â<ÂzÂ<Â0.5 using Hyper Suprime-Cam. Monthly Notices of the Royal Astronomical Society, 2018, 475, 3348-3368.	4.4	78
33	A NEW MILKY WAY SATELLITE DISCOVERED IN THE SUBARU/HYPER SUPRIME-CAM SURVEY. Astrophysical Journal, 2016, 832, 21.	4.5	74
34	The quasar luminosity function at redshift 4 with the Hyper Suprime-Cam Wide Survey. Publication of the Astronomical Society of Japan, 2018, 70, .	2.5	74
35	Subaru High-z Exploration of Low-luminosity Quasars (SHELLQs). X. Discovery of 35 Quasars and Luminous Galaxies at 5.7 â‰ÂzÂâ‰Â7.0. Astrophysical Journal, 2019, 883, 183.	4.5	74
36	GOLDRUSH. III. A systematic search for protoclusters at <i>z</i> Ââ^¼Â4 based on the >100Âdeg2 area. Publication of the Astronomical Society of Japan, 2018, 70, .	2.5	71

#	Article	IF	CITATIONS
37	Survey of Gravitationally-lensed Objects in HSC Imaging (SuGOHI). I. Automatic search for galaxy-scale strong lenses. Publication of the Astronomical Society of Japan, 2018, 70, .	2.5	68
38	A SYSTEMATIC SURVEY OF PROTOCLUSTERS AT z â^¼ 3–6 IN THE CFHTLS DEEP FIELDS. Astrophysical Journal, 2016, 826, 114.	4.5	64
39	Stellar Velocity Dispersion of a Massive Quenching Galaxy at zÂ=Â4.01. Astrophysical Journal Letters, 2019, 885, L34.	8.3	61
40	Minor Contribution of Quasars to Ionizing Photon Budget at zÂâ^¼Â6: Update on Quasar Luminosity Function at the Faint End with Subaru/Suprime-Cam. Astrophysical Journal Letters, 2017, 847, L15.	8.3	57
41	The CFHT Large Area U-band Deep Survey (CLAUDS). Monthly Notices of the Royal Astronomical Society, 0, , .	4.4	48
42	SILVERRUSH. VII. Subaru/HSC Identifications of Protocluster Candidates at z â^1⁄4 6–7: Implications for Cosmic Reionization. Astrophysical Journal, 2019, 879, 28.	4.5	47
43	A FIRST SITE OF GALAXY CLUSTER FORMATION: COMPLETE SPECTROSCOPY OF A PROTOCLUSTER AT <i>z</i> = 6.01. Astrophysical Journal, 2014, 792, 15.	4.5	44
44	Luminous quasars do not live in the most overdense regions of galaxies at <i>z</i> Ââ^¼Â4. Publication of the Astronomical Society of Japan, 2018, 70, .	2.5	43
45	Survey of Gravitationally Lensed Objects in HSC Imaging (SuGOHI). II. Environments and Line-of-Sight Structure of Strong Gravitational Lens Galaxies to zÁâ^¼ÁO.8. Astrophysical Journal, 2018, 867, 107.	4.5	41
46	First Results on the Cluster Galaxy Population from the Subaru Hyper Suprime-Cam Survey. III. Brightest Cluster Galaxies, Stellar Mass Distribution, and Active Galaxies. Astrophysical Journal, 2017, 851, 139.	4.5	39
47	Hyper Suprime-Cam Subaru Strategic Program: A Mass-dependent Slope of the Galaxy Sizeâ^'Mass Relation at z < 1. Astrophysical Journal, 2021, 921, 38.	4.5	38
48	ULTRA-DEEP K _S -BAND IMAGING OF THE HUBBLE FRONTIER FIELDS. Astrophysical Journal, Supplement Series, 2016, 226, 6.	7.7	37
49	Clustering of quasars in a wide luminosity range at redshift 4 with Subaru Hyper Suprime-Cam Wide-field imaging. Publication of the Astronomical Society of Japan, 2018, 70, .	2.5	37
50	SPLASH-SXDF Multi-wavelength Photometric Catalog. Astrophysical Journal, Supplement Series, 2018, 235, 36.	7.7	36
51	The three-year shear catalog of the Subaru Hyper Suprime-Cam SSP Survey. Publication of the Astronomical Society of Japan, 2022, 74, 421-459.	2.5	31
52	First Release of High-Redshift Superluminous Supernovae from the Subaru HIgh- <i>Z</i> SUpernova CAmpaign (SHIZUCA). I. Photometric Properties. Astrophysical Journal, Supplement Series, 2019, 241, 16.	7.7	30
53	The Rest-frame Optical Sizes of Massive Galaxies with Suppressed Star Formation at zÂâ^1⁄4Â4. Astrophysical Journal, 2018, 867, 1.	4.5	29
54	CLUSTERING OF INFRARED-BRIGHT DUST-OBSCURED GALAXIES REVEALED BY THE HYPER SUPRIME-CAM AND WISE. Astrophysical Journal, 2017, 835, 36.	4.5	28

#	Article	IF	CITATIONS
55	Balmer Break Galaxy Candidates at z â^1⁄4 6: A Potential View on the Star Formation Activity at zÂâ‰3Â14. Astrophysical Journal, 2020, 889, 137.	4.5	27
56	A Wide and Deep Exploration of Radio Galaxies with Subaru HSC (WERGS). II. Physical Properties Derived from the SED Fitting with Optical, Infrared, and Radio Data. Astrophysical Journal, Supplement Series, 2019, 243, 15.	7.7	25
57	Subaru High-z Exploration of Low-luminosity Quasars (SHELLQs). XVI. 69 New Quasars at 5.8 < z < 7.0. Astrophysical Journal, Supplement Series, 2022, 259, 18.	7.7	25
58	Enhancement of galaxy overdensity around quasar pairs at <i>z</i> Â<Â3.6 based on the Hyper Suprime-Cam Subaru Strategic Program Survey. Publication of the Astronomical Society of Japan, 2018, 70, .	2.5	23
59	The Galaxy–Halo Connection in High-redshift Universe: Details and Evolution of Stellar-to-halo Mass Ratios of Lyman Break Galaxies on CFHTLS Deep Fields. Astrophysical Journal, 2017, 841, 8.	4.5	22
60	Stellar Stream and Halo Structure in the Andromeda Galaxy from a Subaru/Hyper Suprime-Cam Survey [*] . Astrophysical Journal, 2018, 853, 29.	4.5	19
61	A SPECTROSCOPICALLY CONFIRMED DOUBLE SOURCE PLANE LENS SYSTEM IN THE HYPER SUPRIME-CAM SUBARU STRATEGIC PROGRAM. Astrophysical Journal Letters, 2016, 826, L19.	8.3	17
62	First Release of High-redshift Superluminous Supernovae from the Subaru HIgh-Z SUpernova CAmpaign (SHIZUCA). II. Spectroscopic Properties. Astrophysical Journal, Supplement Series, 2019, 241, 17.	7.7	17
63	HSC-XXL: Baryon budget of the 136 XXL groups and clusters. Publication of the Astronomical Society of Japan, 2022, 74, 175-208.	2.5	17
64	The Missing Satellite Problem Outside of the Local Group. I. Pilot Observation. Astrophysical Journal, 2018, 865, 125.	4.5	16
65	The Brightest UV-selected Galaxies in Protoclusters at zÂâ^¼Â4: Ancestors of Brightest Cluster Galaxies?. Astrophysical Journal, 2019, 878, 68.	4.5	15
66	Statistical Correlation between the Distribution of Lyα Emitters and Intergalactic Medium H i at zÂâ^¼Â2.2 Mapped by the Subaru/Hyper Suprime-Cam. Astrophysical Journal, 2021, 907, 3.	4.5	15
67	Prime Focus Spectrograph (PFS) for the Subaru telescope: ongoing integration and future plans. , 2018, , .		15
68	The Subaru HSC Galaxy Clustering with Photometric Redshift. I. Dark Halo Masses versus Baryonic Properties of Galaxies at 0.3Â≤zÂ≤1.4. Astrophysical Journal, 2020, 904, 128.	4.5	15
69	A 16Âdeg2 survey of emission-line galaxies at <i>z</i> Â<Â1.6 from HSC-SSP PDR2 and CHORUS. Publication of the Astronomical Society of Japan, 2020, 72, .	2.5	14
70	The UV Luminosity Function of Protocluster Galaxies at zÂâ^¼Â4: The Bright-end Excess and the Enhanced Star Formation Rate Density. Astrophysical Journal, 2020, 899, 5.	4.5	13
71	A Wide and Deep Exploration of Radio Galaxies with Subaru HSC (WERGS). I. The Optical Counterparts of FIRST Radio Sources. Astrophysical Journal, 2018, 866, 140.	4.5	12
72	COSMOS2020: Ubiquitous AGN Activity of Massive Quiescent Galaxies at 0 < z < 5 Revealed by X-Ray and Radio Stacking. Astrophysical Journal, 2022, 929, 53.	4.5	12

#	Article	IF	CITATIONS
73	A Wide and Deep Exploration of Radio Galaxies with Subaru HSC (WERGS). III. Discovery of a zÂ=Â4.72 Radio Galaxy with the Lyman Break Technique. Astronomical Journal, 2020, 160, 60.	4.7	11
74	Where's Swimmy?: Mining unique color features buried in galaxies by deep anomaly detection using Subaru Hyper Suprime-Cam data. Publication of the Astronomical Society of Japan, 2022, 74, 1-23.	2.5	8
75	A Wide and Deep Exploration of Radio Galaxies with Subaru HSC (WERGS). IV. Rapidly Growing (Super)Massive Black Holes in Extremely Radio-loud Galaxies. Astrophysical Journal, 2021, 921, 51.	4.5	8
76	HSC16aayt: A Slowly Evolving Interacting Transient Rising for More than 100 Days. Astrophysical Journal, 2019, 882, 70.	4.5	7
77	MUSSES2020J: The Earliest Discovery of a Fast Blue Ultraluminous Transient at Redshift 1.063. Astrophysical Journal Letters, 2022, 933, L36.	8.3	7
78	Interrelation of the Environment of Lyα Emitters and Massive Galaxies at 2 < z < 4.5. Astrophysical Journal, 2021, 916, 35.	4.5	6
79	Faint Quasars Live in the Same Number Density Environments as Lyman Break Galaxies at zÂâ^1⁄4Â4. Astrophysical Journal, 2020, 905, 125.	4.5	5
80	A Rapidly Declining Transient Discovered with the Subaru/Hyper Suprime-Cam. Astrophysical Journal, 2019, 885, 13.	4.5	4
81	Hyper Suprime-Cam Legacy Archive. Publication of the Astronomical Society of Japan, 2021, 73, 735-746.	2.5	2
82	Looking at the Distant Universe with the MeerKAT Array: Discovery of a Luminous OH Megamaser at z > 0.5. Astrophysical Journal Letters, 2022, 931, L7.	8.3	2
83	X-ray study of the double source plane gravitational lens system Eye of Horus observed with XMM–Newton. Monthly Notices of the Royal Astronomical Society, 2020, 491, 3411-3418.	4.4	0