
Longqian Xu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4794783/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Surface-mediated periodate activation by nano zero-valent iron for the enhanced abatement of organic contaminants. Journal of Hazardous Materials, 2022, 423, 126991.	12.4	53
2	High-valent cobalt-oxo species triggers hydroxyl radical for collaborative environmental decontamination. Applied Catalysis B: Environmental, 2022, 300, 120722.	20.2	52
3	Reduced cathodic scale and enhanced electrochemical precipitation of Ca2+ and Mg2+ by a novel fenced cathode structure: Formation of strong alkaline microenvironment and favorable crystallization. Water Research, 2022, 209, 117893.	11.3	15
4	Ammonia-rich solution production from coal gasification gray water using Chemical-free Flow-Electrode capacitive deionization coupled with a monovalent cation exchange membrane. Chemical Engineering Journal, 2022, 433, 133780.	12.7	8
5	Enhanced phosphate removal by nano-lanthanum hydroxide embedded silica aerogel composites: Superior performance and insights into specific adsorption mechanism. Separation and Purification Technology, 2022, 285, 120365.	7.9	25
6	Molecular understanding of aqueous electrolyte properties and dielectric effect in a CDI system. Chemical Engineering Journal, 2022, 435, 134750.	12.7	5
7	Enhancing Brackish Water Desalination using Magnetic Flow-electrode Capacitive Deionization. Water Research, 2022, 216, 118290.	11.3	22
8	Magnetic array for efficient and stable Flow-electrode capacitive deionization. Chemical Engineering Journal, 2022, 446, 137415.	12.7	10
9	Can flow-electrode capacitive deionization become a new in-situ soil remediation technology for heavy metal removal?. Journal of Hazardous Materials, 2021, 402, 123568.	12.4	39
10	Selective Recovery of Phosphorus from Synthetic Urine Using Flow-Electrode Capacitive Deionization (FCDI)-Based Technology. ACS ES&T Water, 2021, 1, 175-184.	4.6	41
11	Formic acid recovery from EDTA wastewater using coupled ozonation and flow-electrode capacitive deionization (Ozo/FCDI): Performance assessment at high cell voltage. Separation and Purification Technology, 2021, 254, 117613.	7.9	17
12	Remarkable phosphate recovery from wastewater by a novel Ca/Fe composite: Synergistic effects of crystal structure and abundant oxygen-vacancies. Chemosphere, 2021, 266, 129102.	8.2	20
13	Scale-up desalination: Membrane-current collector assembly in flow-electrode capacitive deionization system. Water Research, 2021, 190, 116782.	11.3	34
14	Enhanced Oxidation of Organic Contaminants by Iron(II)-Activated Periodate: The Significance of High-Valent Iron–Oxo Species. Environmental Science & Technology, 2021, 55, 7634-7642.	10.0	208
15	Deactivation of Caenorhabditis elegans nematodes in drinking water by PMS/UV-C: efficiency and mechanisms. Environmental Science and Pollution Research, 2021, 28, 58606-58616.	5.3	0
16	Insight into electrosorption behavior of monovalent ions and their selectivity in capacitive deionization: An atomic level study by molecular dynamics simulation. Chemical Engineering Journal, 2021, 415, 128920.	12.7	16
17	Membrane-Current Collector-Based Flow-Electrode Capacitive Deionization System: A Novel Stack Configuration for Scale-Up Desalination. Environmental Science & Technology, 2021, 55, 13286-13296.	10.0	5
18	Selective recovery of phosphorus and urea from fresh human urine using a liquid membrane chamber integrated flow-electrode electrochemical system. Water Research, 2021, 202, 117423.	11.3	30

Longqian Xu

#	Article	IF	CITATIONS
19	Efficient recovery of carboxylates from the effluents treated by advanced oxidation processes using flow-electrode capacitive deionization in short-circuited closed-cycle operation. Separation and Purification Technology, 2021, 275, 119151.	7.9	10
20	Highly selective oxidation of organic contaminants in the Rulll-activated peroxymonosulfate process: The dominance of RuVO species. Chemosphere, 2021, 285, 131544.	8.2	13
21	Selective recovery of formic acid from wastewater using an ion-capture electrochemical system integrated with a liquid-membrane chamber. Chemical Engineering Journal, 2021, 425, 131429.	12.7	13
22	Enhancing the dioxygen activation for arsenic removal by Cu0 nano-shell-decorated nZVI: Synergistic effects and mechanisms. Chemical Engineering Journal, 2020, 384, 123295.	12.7	36
23	Activation of dissolved molecular oxygen by Cu(0) for bisphenol a degradation: Role of Cu(0) and formation of reactive oxygen species. Chemosphere, 2020, 241, 125034.	8.2	19
24	Unraveling the Overlooked Involvement of High-Valent Cobalt-Oxo Species Generated from the Cobalt(II)-Activated Peroxymonosulfate Process. Environmental Science & Technology, 2020, 54, 16231-16239.	10.0	310
25	Non-selective degradation of organic pollutants via dioxygen activation induced by Fe(II)-tetrapolyphosphate complexes: Identification of reactive oxidant and kinetic modeling. Chemical Engineering Journal, 2020, 398, 125603.	12.7	34
26	Enhancing the degradation of bisphenol A by dioxygen activation using bimetallic Cu/Fe@zeolite: Critical role of Cu(I) and superoxide radical. Separation and Purification Technology, 2020, 253, 117550.	7.9	14
27	Comparative performance of green rusts generated in Fe0–electrocoagulation for Cd2+ removal from high salinity wastewater: Mechanisms and optimization. Journal of Environmental Management, 2019, 237, 495-503.	7.8	12
28	Initial dissolved oxygen-adjusted electrochemical generation of sulfate green rust for cadmium removal using a closed-atmosphere Fe–electrocoagulation system. Chemical Engineering Journal, 2019, 359, 1411-1418.	12.7	28
29	Rapid removal of Pb ²⁺ from aqueous solution by phosphate-modified baker's yeast. RSC Advances, 2018, 8, 8026-8038.	3.6	24
30	Optimization and assessment of Fe–electrocoagulation for the removal of potentially toxic metals from real smelting wastewater. Journal of Environmental Management, 2018, 218, 129-138.	7.8	48
31	Sulfite assisted rotating disc electrocoagulation on cadmium removal: Parameter optimization and response surface methodology. Separation and Purification Technology, 2018, 195, 121-129.	7.9	20
32	Characterization and adsorption properties of cross-linked yeast/β-cyclodextrin polymers for Pb(<scp>ii</scp>) and Cd(<scp>ii</scp>) adsorption. RSC Advances, 2018, 8, 31542-31554.	3.6	25
33	Simultaneous removal of cadmium, zinc and manganese using electrocoagulation: Influence of operating parameters and electrolyte nature. Journal of Environmental Management, 2017, 204, 394-403.	7.8	54
34	Simultaneous removal of Zn 2+ and Mn 2+ ions from synthetic and real smelting wastewater using electrocoagulation process: Influence of pulse current parameters and anions. Separation and Purification Technology, 2017, 188, 316-328.	7.9	31
35	Comparative performance of aerobic and anaerobic environments on simultaneous removal of Cd2+ and Mn2+ by Fe–electrocoagulation. , 0, 136, 356-368.		0