List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4794354/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for Alzheimer's disease. Nature Genetics, 2013, 45, 1452-1458.	9.4	3,741
2	Genetic risk and a primary role for cell-mediated immune mechanisms in multiple sclerosis. Nature, 2011, 476, 214-219.	13.7	2,400
3	Genome-wide association study identifies variants at CLU and CR1 associated with Alzheimer's disease. Nature Genetics, 2009, 41, 1094-1099.	9.4	2,155
4	Common variants at ABCA7, MS4A6A/MS4A4E, EPHA1, CD33 and CD2AP are associated with Alzheimer's disease. Nature Genetics, 2011, 43, 429-435.	9.4	1,708
5	Analysis of immune-related loci identifies 48 new susceptibility variants for multiple sclerosis. Nature Genetics, 2013, 45, 1353-1360.	9.4	1,213
6	Rare coding variants in PLCG2, ABI3, and TREM2 implicate microglial-mediated innate immunity in Alzheimer's disease. Nature Genetics, 2017, 49, 1373-1384.	9.4	783
7	APOE and Alzheimer disease: a major gene with semi-dominant inheritance. Molecular Psychiatry, 2011, 16, 903-907.	4.1	529
8	Presymptomatic cognitive and neuroanatomical changes in genetic frontotemporal dementia in the Genetic Frontotemporal dementia Initiative (GENFI) study: a cross-sectional analysis. Lancet Neurology, The, 2015, 14, 253-262.	4.9	432
9	The Alzheimer's Association external quality control program for cerebrospinal fluid biomarkers. Alzheimer's and Dementia, 2011, 7, 386.	0.4	354
10	A Polymorphism in CALHM1 Influences Ca2+ Homeostasis, Aβ Levels, and Alzheimer's Disease Risk. Cell, 2008, 133, 1149-1161.	13.5	310
11	Frontotemporal dementia and its subtypes: a genome-wide association study. Lancet Neurology, The, 2014, 13, 686-699.	4.9	302
12	Intrathecal Chemokine Synthesis in Mild Cognitive Impairment and Alzheimer Disease. Archives of Neurology, 2006, 63, 538.	4.9	268
13	Uncovering the heterogeneity and temporal complexity of neurodegenerative diseases with Subtype and Stage Inference. Nature Communications, 2018, 9, 4273.	5.8	263
14	Cerebrospinal fluid soluble TREM2 is higher in Alzheimer disease and associated with mutation status. Acta Neuropathologica, 2016, 131, 925-933.	3.9	262
15	<i>SQSTM1</i> mutations in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Neurology, 2012, 79, 1556-1562.	1.5	252
16	Conversion from clinically isolated syndrome to multiple sclerosis: A large multicentre study. Multiple Sclerosis Journal, 2015, 21, 1013-1024.	1.4	249
17	Identification of soluble TREM-2 in the cerebrospinal fluid and its association with multiple sclerosis and CNS inflammation. Brain, 2008, 131, 3081-3091.	3.7	248
18	TREM2 regulates microglial cell activation in response to demyelination in vivo. Acta Neuropathologica, 2015, 129, 429-447.	3.9	224

#	Article	IF	CITATIONS
19	The Cornea in Sjol`gren's Syndrome: An In Vivo Confocal Study. , 2007, 48, 2017.		222
20	Consensus guidelines for lumbar puncture in patients with neurological diseases. Alzheimer's and Dementia: Diagnosis, Assessment and Disease Monitoring, 2017, 8, 111-126.	1.2	197
21	Circulating miRNAs as Potential Biomarkers in Alzheimer's Disease. Journal of Alzheimer's Disease, 2014, 42, 1261-1267.	1.2	188
22	DNA methylation in repetitive elements and Alzheimer disease. Brain, Behavior, and Immunity, 2011, 25, 1078-1083.	2.0	187
23	Serum MCP-1 levels are increased in mild cognitive impairment and mild Alzheimer's disease. Neurobiology of Aging, 2006, 27, 1763-1768.	1.5	185
24	Oxidative imbalance in patients with mild cognitive impairment and Alzheimer's disease. Neurobiology of Aging, 2006, 27, 262-269.	1.5	178
25	Convergent genetic and expression data implicate immunity in Alzheimer's disease. Alzheimer's and Dementia, 2015, 11, 658-671.	0.4	173
26	Selective DNA Methylation of BDNF Promoter in Bipolar Disorder: Differences Among Patients with BDI and BDII. Neuropsychopharmacology, 2012, 37, 1647-1655.	2.8	166
27	Gene-Wide Analysis Detects Two New Susceptibility Genes for Alzheimer's Disease. PLoS ONE, 2014, 9, e94661.	1.1	155
28	Patterns of gray matter atrophy in genetic frontotemporal dementia: results from the GENFI study. Neurobiology of Aging, 2018, 62, 191-196.	1.5	151
29	Expression and genetic analysis of miRNAs involved in CD4+ cell activation in patients with multiple sclerosis. Neuroscience Letters, 2011, 504, 9-12.	1.0	147
30	Chitinase 3-like 1: prognostic biomarker in clinically isolated syndromes. Brain, 2015, 138, 918-931.	3.7	147
31	Heterozygous TREM2 mutations in frontotemporal dementia. Neurobiology of Aging, 2014, 35, 934.e7-934.e10.	1.5	134
32	Consensus definitions and application guidelines for control groups in cerebrospinal fluid biomarker studies in multiple sclerosis. Multiple Sclerosis Journal, 2013, 19, 1802-1809.	1.4	133
33	Corneal Involvement in Rheumatoid Arthritis: An In Vivo Confocal Study. , 2008, 49, 560.		129
34	Identification of novel CSF biomarkers for neurodegeneration and their validation by a high-throughput multiplexed targeted proteomic assay. Molecular Neurodegeneration, 2015, 10, 64.	4.4	121
35	Chemokines in serum and cerebrospinal fluid of Alzheimer's disease patients. Annals of Neurology, 2003, 53, 547-548.	2.8	115
36	Vascular endothelial growth factor gene variability is associated with increased risk for AD. Annals of Neurology, 2005, 57, 373-380.	2.8	115

#	Article	IF	CITATIONS
37	The C9orf72 repeat expansion itself is methylated in ALS and FTLD patients. Acta Neuropathologica, 2015, 129, 715-727.	3.9	114
38	Disease-modifying treatments for Alzheimer's disease. Therapeutic Advances in Neurological Disorders, 2011, 4, 203-216.	1.5	110
39	<scp>EFNS</scp> â€ <scp>ENS</scp> / <scp>EAN</scp> Guideline on concomitant use of cholinesterase inhibitors and memantine in moderate to severe Alzheimer's disease. European Journal of Neurology, 2015, 22, 889-898.	1.7	110
40	Autosomal Dominant Frontotemporal Lobar Degeneration Due to the C9ORF72 Hexanucleotide Repeat Expansion: Late-Onset Psychotic Clinical Presentation. Biological Psychiatry, 2013, 74, 384-391.	0.7	105
41	Production of monocyte chemoattractant protein-1 in amyotrophic lateral sclerosis. Muscle and Nerve, 2005, 32, 541-544.	1.0	104
42	Genome-wide haplotype association study identifies the FRMD4A gene as a risk locus for Alzheimer's disease. Molecular Psychiatry, 2013, 18, 461-470.	4.1	103
43	Osteopontin is Increased in the Cerebrospinal Fluid of Patients with Alzheimer's Disease and Its Levels Correlate with Cognitive Decline. Journal of Alzheimer's Disease, 2010, 19, 1143-1148.	1.2	100
44	Decreased circulating miRNA levels in patients with primary progressive multiple sclerosis. Multiple Sclerosis Journal, 2013, 19, 1938-1942.	1.4	98
45	Plasma levels of beta-amyloid (1–42) in Alzheimer's disease and mild cognitive impairment. Neurobiology of Aging, 2006, 27, 904-905.	1.5	97
46	Potential genetic modifiers of disease risk and age at onset in patients with frontotemporal lobar degeneration and GRN mutations: a genome-wide association study. Lancet Neurology, The, 2018, 17, 548-558.	4.9	97
47	MicroRNA and mRNA expression profile screening in multiple sclerosis patients to unravel novel pathogenic steps and identify potential biomarkers. Neuroscience Letters, 2012, 508, 4-8.	1.0	95
48	Investigation of C9orf72 in 4 Neurodegenerative Disorders. Archives of Neurology, 2012, 69, 1583.	4.9	89
49	Multiple sclerosis: BAFF and CXCL13 in cerebrospinal fluid. Multiple Sclerosis Journal, 2011, 17, 819-829.	1.4	88
50	Optimal Plasma Progranulin Cutoff Value for Predicting Null Progranulin Mutations in Neurodegenerative Diseases: A Multicenter Italian Study. Neurodegenerative Diseases, 2012, 9, 121-127.	0.8	88
51	Mutation analysis of <i>CHCHD10</i> in different neurodegenerative diseases. Brain, 2015, 138, e380-e380.	3.7	86
52	Old and new acetylcholinesterase inhibitors for Alzheimer's disease. Expert Opinion on Investigational Drugs, 2016, 25, 1181-1187.	1.9	86
53	α-MSH Peptides Inhibit Production of Nitric Oxide and Tumor Necrosis Factor-α by Microglial Cells Activated with β-Amyloid and Interferon γ. Biochemical and Biophysical Research Communications, 1999, 263, 251-256.	1.0	85
54	Epigenetic modulation of BDNF gene: Differences in DNA methylation between unipolar and bipolar patients. Journal of Affective Disorders, 2014, 166, 330-333.	2.0	85

#	Article	IF	CITATIONS
55	Pioglitazone for the treatment of Alzheimer's disease. Expert Opinion on Investigational Drugs, 2017, 26, 97-101.	1.9	85
56	Variation in <i>MAPT</i> is associated with cerebrospinal fluid tau levels in the presence of amyloid-beta deposition. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 8050-8054.	3.3	84
57	Progranulin plasma levels as potential biomarker for the identification of GRN deletion carriers. A case with atypical onset as clinical amnestic Mild Cognitive Impairment converted to Alzheimer's disease. Journal of the Neurological Sciences, 2009, 287, 291-293.	0.3	83
58	Clinical phenotypes and genetic biomarkers of FTLD. Journal of Neural Transmission, 2012, 119, 851-860.	1.4	83
59	Evidence of the association of BIN1 and PICALM with the AD risk in contrasting European populations. Neurobiology of Aging, 2011, 32, 756.e11-756.e15.	1.5	82
60	Lack of adiponectin leads to increased lymphocyte activation and increased disease severity in a mouse model of multiple sclerosis. European Journal of Immunology, 2013, 43, 2089-2100.	1.6	80
61	Progress in Alzheimer's disease. Journal of Neurology, 2012, 259, 201-211.	1.8	79
62	Epigenetic Modulation of BDNF Gene in Patients with Major Depressive Disorder. Biological Psychiatry, 2013, 73, e6-e7.	0.7	79
63	MCP-1 in Alzheimer's disease patients: A-2518G polymorphism and serum levels. Neurobiology of Aging, 2004, 25, 1169-1173.	1.5	77
64	Intrathecal levels of IL-6, IL-11 and LIF in Alzheimer's disease and frontotemporal lobar degeneration. Journal of Neurology, 2008, 255, 539-544.	1.8	76
65	Loss of function mutations in the progranulin gene are related to pro-inflammatory cytokine dysregulation in frontotemporal lobar degeneration patients. Journal of Neuroinflammation, 2011, 8, 65.	3.1	76
66	Weight Loss Predicts Progression of Mild Cognitive Impairment to Alzheimer's Disease. PLoS ONE, 2016, 11, e0151710.	1.1	76
67	Hypermethylation of the CpG-island near the C9orf72 G4C2-repeat expansion in FTLD patients. Human Molecular Genetics, 2014, 23, 5630-5637.	1.4	74
68	Innate Immune System and Inflammation in Alzheimer's Disease: From Pathogenesis to Treatment. NeuroImmunoModulation, 2014, 21, 79-87.	0.9	74
69	Psychiatric Symptoms in Frontotemporal Dementia: Epidemiology, Phenotypes, and Differential Diagnosis. Biological Psychiatry, 2015, 78, 684-692.	0.7	73
70	Expression and Genetic Analysis of MicroRNAs Involved in Multiple Sclerosis. International Journal of Molecular Sciences, 2013, 14, 4375-4384.	1.8	71
71	Physical Activity Reduces the Risk of Dementia in Mild Cognitive Impairment Subjects: A Cohort Study. Journal of Alzheimer's Disease, 2014, 39, 833-839.	1.2	71
72	Intrathecal chemokine levels in Alzheimer disease and frontotemporal lobar degeneration. Neurology, 2006, 66, 146-147.	1.5	67

#	Article	IF	CITATIONS
73	From Genotype to Phenotype: Two Cases of Genetic Frontotemporal Lobar Degeneration with Premorbid Bipolar Disorder. Journal of Alzheimer's Disease, 2011, 27, 791-797.	1.2	65
74	Csf p-tau ₁₈₁ /tau ratio as biomarker for TDP pathology in frontotemporal dementia. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2015, 16, 86-91.	1.1	65
75	Epigenetic Regulation of Fatty Acid Amide Hydrolase in Alzheimer Disease. PLoS ONE, 2012, 7, e39186.	1.1	64
76	Progranulin genetic variations in frontotemporal lobar degeneration: evidence for low mutation frequency in an Italian clinical series. Neurogenetics, 2008, 9, 197-205.	0.7	63
77	Inclusion body myopathy and frontotemporal dementia caused by a novel VCP mutation. Neurobiology of Aging, 2009, 30, 752-758.	1.5	63
78	White matter hyperintensities are seen only in GRN mutation carriers in the GENFI cohort. NeuroImage: Clinical, 2017, 15, 171-180.	1.4	63
79	Phenotypic Heterogeneity of the GRN Asp22fs Mutation in a Large Italian Kindred. Journal of Alzheimer's Disease, 2011, 24, 253-259.	1.2	62
80	An Emerging Role for Long Non-Coding RNA Dysregulation in Neurological Disorders. International Journal of Molecular Sciences, 2013, 14, 20427-20442.	1.8	62
81	Fluid biomarkers in frontotemporal dementia: past, present and future. Journal of Neurology, Neurosurgery and Psychiatry, 2021, 92, 204-215.	0.9	62
82	MicroRNAs as Active Players in the Pathogenesis of Multiple Sclerosis. International Journal of Molecular Sciences, 2012, 13, 13227-13239.	1.8	61
83	Expression of the Transcription Factor Sp1 and its Regulatory hsa-miR-29b in Peripheral Blood Mononuclear Cells from Patients with Alzheimer's Disease. Journal of Alzheimer's Disease, 2013, 35, 487-494.	1.2	61
84	Early Onset Behavioral Variant Frontotemporal Dementia due to the C9ORF72 Hexanucleotide Repeat Expansion: Psychiatric Clinical Presentations. Journal of Alzheimer's Disease, 2012, 31, 447-452.	1.2	60
85	Rs5848 Variant Influences GRN mRNA Levels in Brain and Peripheral Mononuclear Cells in Patients with Alzheimer's Disease. Journal of Alzheimer's Disease, 2009, 18, 603-612.	1.2	59
86	CHCHD10mutations in Italian patients with sporadic amyotrophic lateral sclerosis: Figure 1. Brain, 2015, 138, e372-e372.	3.7	59
87	Recognition of viral and self-antigens by T H 1 and T H 1/T H 17 central memory cells in patients with multiple sclerosis reveals distinct roles in immune surveillance and relapses. Journal of Allergy and Clinical Immunology, 2017, 140, 797-808.	1.5	59
88	An APOE Haplotype Associated with Decreased ε4 Expression Increases the Risk of Late Onset Alzheimer's Disease. Journal of Alzheimer's Disease, 2011, 24, 235-245.	1.2	58
89	Role of <i>hnRNP-A1</i> and miR-590-3p in Neuronal Death: Genetics and Expression Analysis in Patients with Alzheimer Disease and Frontotemporal Lobar Degeneration. Rejuvenation Research, 2011, 14, 275-281.	0.9	57
90	Immunoproteasome LMP2 60HH Variant Alters MBP Epitope Generation and Reduces the Risk to Develop Multiple Sclerosis in Italian Female Population. PLoS ONE, 2010, 5, e9287.	1.1	56

#	Article	IF	CITATIONS
91	The Enigmatic Role of Viruses in Multiple Sclerosis: Molecular Mimicry or Disturbed Immune Surveillance?. Trends in Immunology, 2017, 38, 498-512.	2.9	56
92	Disease-modifying drugs in Alzheimer's disease. Drug Design, Development and Therapy, 2013, 7, 1471.	2.0	55
93	Cognitive reserve and TMEM106B genotype modulate brain damage in presymptomatic frontotemporal dementia: a GENFI study. Brain, 2017, 140, 1784-1791.	3.7	55
94	Is M129V of PRNP gene associated with Alzheimer's disease? A case-control study and a meta-analysis. Neurobiology of Aging, 2006, 27, 770.e1-770.e5.	1.5	54
95	The CALHM1 P86L Polymorphism is a Genetic Modifier of Age at Onset in Alzheimer's Disease: a Meta-Analysis Study. Journal of Alzheimer's Disease, 2010, 22, 247-255.	1.2	54
96	Inflammation in dry eye associated with rheumatoid arthritis: Cytokine and <i>inÂvivo</i> confocal microscopy study. Innate Immunity, 2013, 19, 420-427.	1.1	54
97	Role of Genetics and Epigenetics in the Pathogenesis of Alzheimer's Disease and Frontotemporal Dementia. Journal of Alzheimer's Disease, 2018, 62, 913-932.	1.2	54
98	HLA-class I markers and multiple sclerosis susceptibility in the Italian population. Genes and Immunity, 2010, 11, 173-180.	2.2	51
99	Inflammatory molecules in Frontotemporal Dementia: Cerebrospinal fluid signature of progranulin mutation carriers. Brain, Behavior, and Immunity, 2015, 49, 182-187.	2.0	51
100	The C9ORF72 hexanucleotide repeat expansion is a rare cause of schizophrenia. Neurobiology of Aging, 2014, 35, 1214.e7-1214.e10.	1.5	49
101	The human astrocytoma cell line U373MG produces monocyte chemotactic protein (MCP)-1 upon stimulation with β-amyloid protein. Neuroscience Letters, 2000, 283, 177-180.	1.0	48
102	Novel exon 1 progranulin gene variant in Alzheimer's disease. European Journal of Neurology, 2008, 15, 1111-1117.	1.7	48
103	A genome-wide screening and SNPs-to-genes approach to identify novel genetic risk factors associated with frontotemporal dementia. Neurobiology of Aging, 2015, 36, 2904.e13-2904.e26.	1.5	48
104	Increased PCSK9 Cerebrospinal Fluid Concentrations in Alzheimer's Disease. Journal of Alzheimer's Disease, 2016, 55, 315-320.	1.2	47
105	Functional network resilience to pathology in presymptomatic genetic frontotemporal dementia. Neurobiology of Aging, 2019, 77, 169-177.	1.5	47
106	A Functional Variant in ERAP1 Predisposes to Multiple Sclerosis. PLoS ONE, 2012, 7, e29931.	1.1	46
107	Cerebrospinal Fluid Biomarkers in Progranulin Mutations Carriers. Journal of Alzheimer's Disease, 2011, 27, 781-790.	1.2	45
108	ABCA1- and ABCG1-mediated cholesterol efflux capacity of cerebrospinal fluid is impaired in Alzheimer's disease. Journal of Lipid Research, 2019, 60, 1449-1456.	2.0	44

#	Article	IF	CITATIONS
109	Pharmacogenomics in Alzheimer's disease: a genome-wide association study of response to cholinesterase inhibitors. Neurobiology of Aging, 2013, 34, 1711.e7-1711.e13.	1.5	43
110	Treatment of Alzheimers Disease: Symptomatic and Disease-Modifying Approaches. Current Aging Science, 2010, 3, 46-56.	0.4	41
111	Growth Arrest Specific 6 Concentration is Increased in the Cerebrospinal Fluid of Patients with Alzheimer's Disease. Journal of Alzheimer's Disease, 2016, 55, 59-65.	1.2	41
112	Comparison of arterial spin labeling registration strategies in the multiâ€center GENetic frontotemporal dementia initiative (GENFI). Journal of Magnetic Resonance Imaging, 2018, 47, 131-140.	1.9	41
113	Does Vascular Burden Contribute to the Progression of Mild Cognitive Impairment to Dementia?. Dementia and Geriatric Cognitive Disorders, 2012, 34, 235-243.	0.7	40
114	The <i>SIRT2</i> polymorphism rs10410544 and risk of Alzheimer's disease in two Caucasian case–control cohorts. Alzheimer's and Dementia, 2013, 9, 392-399.	0.4	40
115	Progranulin plasma levels predict the presence of GRN mutations in asymptomatic subjects and do not correlate with brain atrophy: results from the GENFI study. Neurobiology of Aging, 2018, 62, 245.e9-245.e12.	1.5	40
116	Variations of the perforin gene in patients with multiple sclerosis. Genes and Immunity, 2008, 9, 438-444.	2.2	39
117	Founder effect and estimation of the age of the Progranulin Thr272fs mutation in 14 Italian pedigrees with frontotemporal lobar degeneration. Neurobiology of Aging, 2011, 32, 555.e1-555.e8.	1.5	39
118	Effect of fingolimod treatment on circulating miR-15b, miR23a and miR-223 levels in patients with multiple sclerosis. Journal of Neuroimmunology, 2016, 299, 81-83.	1.1	39
119	The loss of macular ganglion cells begins from the early stages of disease and correlates with brain atrophy in multiple sclerosis patients. Multiple Sclerosis Journal, 2019, 25, 31-38.	1.4	39
120	Immunotherapy against amyloid pathology in Alzheimer's disease. Journal of the Neurological Sciences, 2013, 333, 50-54.	0.3	38
121	Hemodynamic and Anatomic Variations Require an Adaptable Approach during Intra-Arterial Chemotherapy for Intraocular Retinoblastoma: Alternative Routes, Strategies, and Follow-Up. American Journal of Neuroradiology, 2016, 37, 1289-1295.	1.2	37
122	Influence of the Glu298Asp polymorphism of NOS3 on age at onset and homocysteine levels in AD patients. Neurobiology of Aging, 2005, 26, 789-794.	1.5	36
123	Frontotemporal lobar degeneration: current knowledge and future challenges. Journal of Neurology, 2012, 259, 2278-2286.	1.8	36
124	CSF β-amyloid and white matter damage: a new perspective on Alzheimer's disease. Journal of Neurology, Neurosurgery and Psychiatry, 2018, 89, 352-357.	0.9	36
125	CCR2-64I polymorphism and CCR5Δ32 deletion in patients with Alzheimer's disease. Journal of the Neurological Sciences, 2004, 225, 79-83.	0.3	35
126	Replication Study to Confirm the Role of CYP2D6 Polymorphism rs1080985 on Donepezil Efficacy in Alzheimer's Disease Patients. Journal of Alzheimer's Disease, 2012, 30, 745-749.	1.2	35

#	Article	IF	CITATIONS
127	Screening of the PFN1 gene in sporadic amyotrophic lateral sclerosis and in frontotemporal dementia. Neurobiology of Aging, 2013, 34, 1517.e9-1517.e10.	1.5	35
128	Extracellular proteasome-osteopontin circuit regulates cell migration with implications in multiple sclerosis. Scientific Reports, 2017, 7, 43718.	1.6	35
129	Role for ATXN1, ATXN2, and HTT intermediate repeats in frontotemporal dementia and Alzheimer's disease. Neurobiology of Aging, 2020, 87, 139.e1-139.e7.	1.5	35
130	Progranulin Gene Variability and Plasma Levels in Bipolar Disorder and Schizophrenia. PLoS ONE, 2012, 7, e32164.	1.1	34
131	Distinct patterns of brain atrophy in Genetic Frontotemporal Dementia Initiative (GENFI) cohort revealed by visual rating scales. Alzheimer's Research and Therapy, 2018, 10, 46.	3.0	34
132	Heterosexual Pedophilia in a Frontotemporal Dementia Patient with a Mutation in the Progranulin Gene. Biological Psychiatry, 2011, 70, e43-e44.	0.7	33
133	Pin1 Contribution to Alzheimer's Disease: Transcriptional and Epigenetic Mechanisms in Patients with Late-Onset Alzheimer's Disease. Neurodegenerative Diseases, 2012, 10, 207-211.	0.8	33
134	Defining the association of TMEM106B variants among frontotemporal lobar degeneration patients with GRN mutations and C9orf72 repeat expansions. Neurobiology of Aging, 2014, 35, 2658.e1-2658.e5.	1.5	33
135	CSF β-amyloid as a putative biomarker of disease progression in multiple sclerosis. Multiple Sclerosis Journal, 2017, 23, 1085-1091.	1.4	33
136	The inner fluctuations of the brain in presymptomatic Frontotemporal Dementia: The chronnectome fingerprint. Neurolmage, 2019, 189, 645-654.	2.1	33
137	Genetics of Frontotemporal Lobar Degeneration. Frontiers in Neurology, 2012, 3, 52.	1.1	32
138	<i>C9ORF72</i> hexanucleotide repeat expansion as a rare cause of bipolar disorder. Bipolar Disorders, 2014, 16, 448-449.	1.1	32
139	Association of a NOS1 promoter repeat with Alzheimer's disease. Neurobiology of Aging, 2008, 29, 1359-1365.	1.5	31
140	Menopausal transition: A possible risk factor for brain pathologic events. Neurobiology of Aging, 2009, 30, 71-80.	1.5	31
141	Role of OLR1 and Its Regulating hsa-miR369-3p in Alzheimer's Disease: Genetics and Expression Analysis. Journal of Alzheimer's Disease, 2011, 26, 787-793.	1.2	31
142	The Impact of Osteopontin Gene Variations on Multiple Sclerosis Development and Progression. Clinical and Developmental Immunology, 2012, 2012, 1-6.	3.3	31
143	Possible Association between SNAP-25 Single Nucleotide Polymorphisms and Alterations of Categorical Fluency and Functional MRI Parameters in Alzheimer's Disease. Journal of Alzheimer's Disease, 2014, 42, 1015-1028.	1.2	31
144	Inducible nitric oxide synthase (iNOS) in immune-mediated demyelination and Wallerian degeneration of the rat peripheral nervous system. Experimental Neurology, 2004, 187, 350-358.	2.0	30

#	Article	IF	CITATIONS
145	Gender-specific influence of the chromosome 16 chemokine gene cluster on the susceptibility to Multiple Sclerosis. Journal of the Neurological Sciences, 2008, 267, 86-90.	0.3	30
146	Progranulin gene (GRN) promoter methylation is increased in patients with sporadic frontotemporal lobar degeneration. Neurological Sciences, 2013, 34, 899-903.	0.9	30
147	Guidelines for uniform reporting of body fluid biomarker studies in neurologic disorders. Neurology, 2014, 83, 1210-1216.	1.5	30
148	Exploring the role of BDNF DNA methylation and hydroxymethylation in patients with obsessive compulsive disorder. Journal of Psychiatric Research, 2019, 114, 17-23.	1.5	29
149	MDC/CCL22 intrathecal levels in patients with multiple sclerosis. Multiple Sclerosis Journal, 2008, 14, 547-549.	1.4	28
150	Interleukin-6 plasma level increases with age in an Italian elderly population ("The Treviso) Tj ETQq0 0 0 rgBT / 155-162.	Overlock 3.0	10 Tf 50 547 28
151	GRN Variability Contributes to Sporadic Frontotemporal Lobar Degeneration. Journal of Alzheimer's Disease, 2010, 19, 171-177.	1.2	28
152	A Novel MAPT Mutation Associated with the Clinical Phenotype of Progressive Nonfluent Aphasia. Journal of Alzheimer's Disease, 2011, 26, 19-26.	1.2	28
153	Cenetic analysis of matrin 3 gene in French amyotrophic lateral sclerosis patients and frontotemporal lobar degeneration with amyotrophic lateral sclerosis patients. Neurobiology of Aging, 2014, 35, 2882.e13-2882.e15.	1.5	28
154	Reversible Mild Cognitive Impairment: The Role of Comorbidities at Baseline Evaluation. Journal of Alzheimer's Disease, 2016, 51, 57-67.	1.2	28
155	Distinct Neuroanatomical Correlates of Neuropsychiatric Symptoms in the Three Main Forms of Genetic Frontotemporal Dementia in the GENFI Cohort. Journal of Alzheimer's Disease, 2018, 65, 1-16.	1.2	28
156	A Trans-Specific Polymorphism in ZC3HAV1 Is Maintained by Long-Standing Balancing Selection and May Confer Susceptibility to Multiple Sclerosis. Molecular Biology and Evolution, 2012, 29, 1599-1613.	3.5	27
157	Incomplete Penetrance of the C9ORF72 Hexanucleotide Repeat Expansions: Frequency in a Cohort of Geriatric Non-Demented Subjects. Journal of Alzheimer's Disease, 2014, 39, 19-22.	1.2	27
158	Current Understanding on the Role of Standard and Immunoproteasomes in Inflammatory/Immunological Pathways of Multiple Sclerosis. Autoimmune Diseases, 2014, 2014, 1-12.	2.7	27
159	Analysis of genes, pathways and networks involved in disease severity and age at onset in primary-progressive multiple sclerosis. Multiple Sclerosis Journal, 2015, 21, 1431-1442.	1.4	27
160	The T-786C NOS3 polymorphism in Alzheimer's disease: Association and influence on gene expression. Neuroscience Letters, 2005, 382, 300-303.	1.0	26
161	Regulation of gene transcription in bipolar disorders: Role of DNA methylation in the relationship between prodynorphin and brain derived neurotrophic factor. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2018, 82, 314-321.	2.5	26
162	CSF pro-orexin and amyloid-β38 expression in Alzheimer's disease and frontotemporal dementia. Neurobiology of Aging, 2018, 72, 171-176.	1.5	25

#	Article	IF	CITATIONS
163	Synergistic effect of Â-amyloid protein and interferon gamma on nitric oxide production by C2C12 muscle cells. Brain, 2000, 123, 374-379.	3.7	24
164	A novel polymorphism in SEL1L confers susceptibility to Alzheimer's disease. Neuroscience Letters, 2006, 398, 53-58.	1.0	24
165	ICOS gene haplotypes correlate with IL10 secretion and multiple sclerosis evolution. Journal of Neuroimmunology, 2007, 186, 193-198.	1.1	24
166	Cerebrospinal fluid progranulin levels in patients with different multiple sclerosis subtypes. Neuroscience Letters, 2010, 469, 234-236.	1.0	24
167	Intra-arterial chemotherapy with melphalan for intraocular retinoblastoma. British Journal of Ophthalmology, 2013, 97, 1219-1221.	2.1	24
168	Preliminary Evidence that VEGF Genetic Variability Confers Susceptibility to Frontotemporal Lobar Degeneration. Rejuvenation Research, 2008, 11, 773-780.	0.9	23
169	Pharmacological Management of Psychiatric Symptoms in Frontotemporal Dementia: A Systematic Review. Journal of Geriatric Psychiatry and Neurology, 2017, 30, 162-169.	1.2	23
170	Neuronal nitric oxide synthase C276T polymorphism increases the risk for frontotemporal lobar degeneration. European Journal of Neurology, 2007, 15, 071203214007003-???.	1.7	22
171	The <i>NOS3 G894T</i> (Glu298Asp) polymorphism is a risk factor for frontotemporal lobar degeneration. European Journal of Neurology, 2009, 16, 37-42.	1.7	22
172	A Low-Molecular-Weight Ferroxidase Is Increased in the CSF of sCJD Cases: CSF Ferroxidase and Transferrin as Diagnostic Biomarkers for sCJD. Antioxidants and Redox Signaling, 2013, 19, 1662-1675.	2.5	22
173	The Role of the Innate Immune System in Alzheimer's Disease and Frontotemporal Lobar Degeneration: An Eye on Microglia. Clinical and Developmental Immunology, 2013, 2013, 1-11.	3.3	22
174	Gene promoter methylation and expression of Pin1 differ between patients with frontotemporal dementia and Alzheimer's disease. Journal of the Neurological Sciences, 2016, 362, 283-286.	0.3	22
175	The distinct roles of monoamines in multiple sclerosis: A bridge between the immune and nervous systems?. Brain, Behavior, and Immunity, 2021, 94, 381-391.	2.0	22
176	The leukocyte expression of CD36 is low in patients with Alzheimer's disease and mild cognitive impairment. Neurobiology of Aging, 2007, 28, 515-518.	1.5	21
177	Presenilin-1 mutation E318G and familial Alzheimer's disease in the Italian population. Neurobiology of Aging, 2007, 28, 1682-1688.	1.5	21
178	Stratifying the Presymptomatic Phase of Genetic Frontotemporal Dementia by Serum <scp>NfL</scp> and <scp>pNfH</scp> : A Longitudinal Multicentre Study. Annals of Neurology, 2022, 91, 33-47.	2.8	21
179	IP-10 serum levels are not increased in mild cognitive impairment and Alzheimer's disease. European Journal of Neurology, 2007, 14, e3-e4.	1.7	20
180	A sequence variation in the MOG gene is involved in multiple sclerosis susceptibility in Italy. Genes and Immunity, 2008, 9, 7-15.	2.2	20

#	Article	IF	CITATIONS
181	The H1 Haplotype of the Tau Gene (MAPT) is Associated with Mild Cognitive Impairment. Journal of Alzheimer's Disease, 2010, 19, 909-914.	1.2	20
182	GSK3Î ² genetic variability in patients with Multiple Sclerosis. Neuroscience Letters, 2011, 497, 46-48.	1.0	20
183	Possible Influence of a Non-Synonymous Polymorphism Located in the NGF Precursor on Susceptibility to Late-Onset Alzheimer's Disease and Mild Cognitive Impairment. Journal of Alzheimer's Disease, 2012, 29, 699-705.	1.2	20
184	Identification of a new susceptibility variant for multiple sclerosis in OAS1 by population genetics analysis. Human Genetics, 2012, 131, 87-97.	1.8	20
185	Clinical and MRI correlates of disease progression in a case of nonfluent/agrammatic variant of primary progressive aphasia due to progranulin (GRN) Cys157LysfsX97 mutation. Journal of the Neurological Sciences, 2014, 342, 167-172.	0.3	20
186	Comparison of β 2-microglobulin serum level between Alzheimer's patients, cognitive healthy and mild cognitive impaired individuals. Biomarkers, 2018, 23, 603-608.	0.9	20
187	CXCL10 haplotypes and multiple sclerosis: association and correlation with clinical course. European Journal of Neurology, 2007, 14, 162-167.	1.7	19
188	Loss of epidermal growth factor regulation by cobalamin in multiple sclerosis. Brain Research, 2010, 1333, 64-71.	1.1	19
189	Evidence of Pre-Synaptic Dopaminergic Deficit in a Patient with a Novel Progranulin Mutation Presenting with Atypical Parkinsonismâ€. Journal of Alzheimer's Disease, 2013, 38, 747-752.	1.2	19
190	Progranulin gene variability influences the risk for bipolar I disorder, but not bipolar II disorder. Bipolar Disorders, 2014, 16, 769-772.	1.1	19
191	Iron in Frontotemporal Lobar Degeneration: A New Subcortical Pathological Pathway?. Neurodegenerative Diseases, 2016, 16, 172-178.	0.8	19
192	Faster Cortical Thinning and Surface Area Loss in Presymptomatic and Symptomatic <i>C9orf72</i> Repeat Expansion Adult Carriers. Annals of Neurology, 2020, 88, 113-122.	2.8	19
193	Circular RNAs: Emblematic Players of Neurogenesis and Neurodegeneration. International Journal of Molecular Sciences, 2022, 23, 4134.	1.8	19
194	Chemokine network in multiple sclerosis: role in pathogenesis and targeting for future treatments. Expert Review of Neurotherapeutics, 2004, 4, 439-453.	1.4	18
195	Absence of TREM2 polymorphisms in patients with Alzheimer's disease and Frontotemporal Lobar Degeneration. Neuroscience Letters, 2007, 411, 133-137.	1.0	18
196	No major progranulin genetic variability contribution to disease etiopathogenesis in an ALS Italian cohort. Neurobiology of Aging, 2011, 32, 1157-1158.	1.5	18
197	Is HCRTR2 a Genetic Risk Factor for Alzheimer's Disease?. Dementia and Geriatric Cognitive Disorders, 2014, 38, 245-253.	0.7	18
198	CHRNA7 Gene and Response to Cholinesterase Inhibitors in an Italian Cohort of Alzheimer's Disease Patients. Journal of Alzheimer's Disease, 2016, 52, 1203-1208.	1.2	18

#	Article	IF	CITATIONS
199	PICALM Gene Methylation in Blood of Alzheimer's Disease Patients Is Associated with Cognitive Decline. Journal of Alzheimer's Disease, 2018, 65, 283-292.	1.2	18
200	Structural and metabolic cerebral alterations between elderly bipolar disorder and behavioural variant frontotemporal dementia: A combined MRI-PET study. Australian and New Zealand Journal of Psychiatry, 2019, 53, 413-423.	1.3	18
201	Extracellular Vesicles in Multiple Sclerosis: Role in the Pathogenesis and Potential Usefulness as Biomarkers and Therapeutic Tools. Cells, 2021, 10, 1733.	1.8	18
202	E-selectin A561C and G98T polymorphisms influence susceptibility and course of multiple sclerosis. Journal of Neuroimmunology, 2005, 165, 201-205.	1.1	17
203	Association of neuronal nitric oxide synthase C276T polymorphism with Alzheimer's disease. Journal of Neurology, 2005, 252, 985-986.	1.8	17
204	Candidate gene analysis of IP-10 gene in patients with Alzheimer's disease. Neuroscience Letters, 2006, 404, 217-221.	1.0	17
205	MCP-1 A-2518G Polymorphism: Effect on Susceptibility for Frontotemporal Lobar Degeneration and on Cerebrospinal Fluid MCP-1 Levels. Journal of Alzheimer's Disease, 2009, 17, 125-133.	1.2	17
206	Progranulin gene variability increases the risk for primary progressive multiple sclerosis in males. Genes and Immunity, 2010, 11, 497-503.	2.2	17
207	Association between DPP6 polymorphism and the risk of progressive multiple sclerosis in Northern and Southern Europeans. Neuroscience Letters, 2012, 530, 155-160.	1.0	17
208	GRN Thr272fs Clinical Heterogeneity: A Case with Atypical Late Onset Presenting with a Dementia with Lewy Bodies Phenotype. Journal of Alzheimer's Disease, 2013, 35, 669-674.	1.2	17
209	Gender Effects on Plasma PGRN Levels in Patients with Alzheimer's Disease: A Preliminary Study. Journal of Alzheimer's Disease, 2013, 35, 313-318.	1.2	17
210	Novel Missense Progranulin Gene Mutation Associated with the Semantic Variant of Primary Progressive Aphasia. Journal of Alzheimer's Disease, 2013, 36, 415-420.	1.2	17
211	Novel Evidence of Phenotypical Variability in the Hexanucleotide Repeat Expansion in Chromosome 9. Journal of Alzheimer's Disease, 2013, 35, 455-462.	1.2	17
212	Progranulin as a therapeutic target for dementia. Expert Opinion on Therapeutic Targets, 2018, 22, 579-585.	1.5	17
213	Pharmacological and Epigenetic Regulators of NLRP3 Inflammasome Activation in Alzheimer's Disease. Pharmaceuticals, 2021, 14, 1187.	1.7	17
214	Role of Chitinase 3–like 1 as a Biomarker in Multiple Sclerosis. Neurology: Neuroimmunology and NeuroInflammation, 2022, 9, .	3.1	17
215	Analysis of the genes coding for subunit 10 and 15 of cytochrome c oxidase in Alzheimer's disease. Journal of Neural Transmission, 2009, 116, 1635-1641.	1.4	16
216	Study of thyroid hormone receptor alpha gene polymorphisms on Alzheimer's disease. Neurobiology of Aging, 2011, 32, 624-630.	1.5	16

#	Article	IF	CITATIONS
217	A 66-year-old patient with vanishing white matter disease due to the p.Ala87Val <i>EIF2B3</i> mutation. Neurology, 2012, 79, 2077-2078.	1.5	16
218	Idalopirdine as a treatment for Alzheimer's disease. Expert Opinion on Investigational Drugs, 2015, 24, 981-987.	1.9	16
219	Spatiotemporal analysis for detection of pre-symptomatic shape changes in neurodegenerative diseases: Initial application to the GENFI cohort. NeuroImage, 2019, 188, 282-290.	2.1	16
220	Serotonin Transporter Gene Polymorphic Element <i>5-HTTLPR</i> Increases the Risk of Sporadic Parkinson's Disease in Italy. European Neurology, 2009, 62, 120-123.	0.6	15
221	DCUN1D1is a risk factor for frontotemporal lobar degeneration. European Journal of Neurology, 2009, 16, 870-873.	1.7	15
222	Candidate gene analysis of semaphorins in patients with Alzheimer's disease. Neurological Sciences, 2010, 31, 169-173.	0.9	15
223	A study of the association between the ADAM12 and SH3PXD2A (SH3MD1) genes and Alzheimer's disease. Neuroscience Letters, 2010, 468, 1-2.	1.0	15
224	Genetic variation in the choline O-acetyltransferase gene in depression and Alzheimer's disease: The VITA and Milano studies. Journal of Psychiatric Research, 2011, 45, 1250-1256.	1.5	15
225	PRNP P39L Variant is a Rare Cause ofÂFrontotemporal Dementia in Italian Population. Journal of Alzheimer's Disease, 2016, 50, 353-357.	1.2	15
226	Lag-time in Alzheimer's disease patients: a potential plasmatic oxidative stress marker associated with ApoE4 isoform. Immunity and Ageing, 2019, 16, 7.	1.8	15
227	Progressive, isolated language disturbance: Its significance in a 65-year-old-man. A case report with implications for treatment and review of literature. Journal of the Neurological Sciences, 2006, 240, 45-51.	0.3	14
228	Polymorphisms in the LOC387715/ARMS2 Putative Gene and the Risk for Alzheimer's Disease. Dementia and Geriatric Cognitive Disorders, 2008, 26, 169-174.	0.7	14
229	The <i>CST3</i> B haplotype is associated with frontotemporal lobar degeneration. European Journal of Neurology, 2010, 17, 143-146.	1.7	14
230	SORL1 Gene is Associated with the Conversion from Mild Cognitive Impairment to Alzheimer's Disease. Journal of Alzheimer's Disease, 2015, 46, 771-776.	1.2	14
231	Profiling of Ubiquitination Pathway Genes in Peripheral Cells from Patients with Frontotemporal Dementia due to C90RF72 and GRN Mutations. International Journal of Molecular Sciences, 2015, 16, 1385-1394.	1.8	14
232	P-selectin glycoprotein ligand-1 variable number of tandem repeats (VNTR) polymorphism in patients with multiple sclerosis. Neuroscience Letters, 2005, 388, 149-152.	1.0	13
233	SELPLG and SELP single-nucleotide polymorphisms in multiple sclerosis. Neuroscience Letters, 2006, 394, 92-96.	1.0	13
234	The Serotonin Transporter Promoter Polymorphic Region is not a Risk Factor for Alzheimer's Disease Related Behavioral Disturbances. Journal of Alzheimer's Disease, 2009, 18, 125-130.	1.2	13

#	Article	IF	CITATIONS
235	Lack of replication of <i>KIF1B</i> gene in an Italian primary progressive multiple sclerosis cohort. European Journal of Neurology, 2010, 17, 740-745.	1.7	13
236	Non-progressive leukoencephalopathy with bilateral anterior temporal cysts: a case report and review of the literature. Brain and Development, 2005, 27, 73-77.	0.6	12
237	Role of VECF gene variability in longevity: A lesson from the Italian population. Neurobiology of Aging, 2008, 29, 1917-1922.	1.5	12
238	Sciatic endometriosis presenting as periodic (catamenial) sciatic radiculopathy. Journal of Neurology, 2012, 259, 1470-1471.	1.8	12
239	Progranulin genetic polymorphisms influence progression of disability and relapse recovery in multiple sclerosis. Multiple Sclerosis Journal, 2016, 22, 1007-1012.	1.4	12
240	The Neuroanatomy of Somatoform Disorders: A Magnetic Resonance Imaging Study. Psychosomatics, 2019, 60, 278-288.	2.5	12
241	Serum folate concentrations in patients with cortical and subcortical dementias. Neuroscience Letters, 2007, 420, 213-216.	1.0	11
242	Failure to Replicate an Association of rs5984894 SNP in the PCDH11X Gene in a Collection of 1,222 Alzheimer's Disease Affected Patients. Journal of Alzheimer's Disease, 2010, 21, 385-388.	1.2	11
243	The Progranulin (GRN) Cys157LysfsX97 Mutation is Associated with Nonfluent Variant of Primary Progressive Aphasia Clinical Phenotype. Journal of Alzheimer's Disease, 2012, 28, 759-763.	1.2	11
244	Progress in Alzheimer's disease research in the last year. Journal of Neurology, 2013, 260, 1936-1941.	1.8	11
245	The Italian dementia with Lewy bodies study group (DLB-SINdem): toward a standardization of clinical procedures and multicenter cohort studies design. Neurological Sciences, 2017, 38, 83-91.	0.9	11
246	Alpha1-antichymotrypsin induces TNF-α production and NF-κB activation in the murine N9 microglial cell line. Neuroscience Letters, 2009, 467, 40-42.	1.0	10
247	Emerging amyloid disease-modifying drugs for Alzheimer's disease. Expert Opinion on Emerging Drugs, 2016, 21, 5-7.	1.0	10
248	Improved Cerebrospinal Fluid-Based Discrimination between Alzheimer's Disease Patients and Controls after Correction for Ventricular Volumes. Journal of Alzheimer's Disease, 2017, 56, 543-555.	1.2	10
249	MRI data-driven algorithm for the diagnosis of behavioural variant frontotemporal dementia. Journal of Neurology, Neurosurgery and Psychiatry, 2021, 92, 608-616.	0.9	10
250	Absence of <i>TARDBP</i> Gene Mutations in an Italian Series of Patients with Frontotemporal Lobar Degeneration. Dementia and Geriatric Cognitive Disorders, 2009, 28, 239-243.	0.7	9
251	Is the ornithine transcarbamylase gene a genetic determinant of Alzheimer's disease?. Neuroscience Letters, 2009, 449, 76-80.	1.0	9
252	Is KIF24 a genetic risk factor for Frontotemporal Lobar Degeneration?. Neuroscience Letters, 2010, 482, 240-244.	1.0	9

#	Article	IF	CITATIONS
253	Association of HLA class I markers with multiple sclerosis in the Italian and UK population: evidence of two independent protective effects. Journal of Medical Genetics, 2011, 48, 485-492.	1.5	9
254	Association of the CBLB gene with multiple sclerosis: new evidence from a replication study in an Italian population. Journal of Medical Genetics, 2011, 48, 210-211.	1.5	9
255	Genetics and Expression Analysis of the Specificity Protein 4 Gene (SP4) in Patients with Alzheimer's Disease and Frontotemporal Lobar Degeneration. Journal of Alzheimer's Disease, 2012, 31, 537-542.	1.2	9
256	Clinical, Neuropathological, and Genetic Characteristics of the Novel IVS9+1delG GRN Mutation in a Patient with Frontotemporal Dementia. Journal of Alzheimer's Disease, 2012, 30, 83-90.	1.2	9
257	Italian Frontotemporal Dementia Network (FTD Group-SINDEM): sharing clinical and diagnostic procedures in Frontotemporal Dementia in Italy. Neurological Sciences, 2015, 36, 751-757.	0.9	9
258	Untangling Extracellular Proteasome-Osteopontin Circuit Dynamics in Multiple Sclerosis. Cells, 2019, 8, 262.	1.8	9
259	Genetics and neurobiology of frontotemporal lobar degeneration. Neurological Sciences, 2006, 27, s32-s34.	0.9	8
260	Association study to evaluate the serotonin transporter and apolipoprotein E genes in frontotemporal lobar degeneration in Italy. Journal of Human Genetics, 2008, 53, 1029-1033.	1.1	8
261	Familial clustering in Italian progressive-onset and bout-onset multiple sclerosis. Neurological Sciences, 2014, 35, 789-791.	0.9	8
262	Neuroimaging Correlates of Frontotemporal Dementia Associated with SQSTM1 Mutations. Journal of Alzheimer's Disease, 2016, 53, 303-313.	1.2	8
263	Word and Picture Version of the Free and Cued Selective Reminding Test (FCSRT): Is There Any Difference?. Journal of Alzheimer's Disease, 2017, 61, 47-52.	1.2	8
264	Microtubule defects in mesenchymal stromal cells distinguish patients with Progressive Supranuclear Palsy. Journal of Cellular and Molecular Medicine, 2018, 22, 2670-2679.	1.6	8
265	Disease-related cortical thinning in presymptomatic granulin mutation carriers. NeuroImage: Clinical, 2021, 29, 102540.	1.4	8
266	Interaction between the APOE ɛ4 allele and the APH-1b c+651T>G SNP in Alzheimer's disease. Neurobiology of Aging, 2008, 29, 1494-1501.	1.5	7
267	Candidate gene analysis of selectin cluster in patients with multiple sclerosis. Journal of Neurology, 2009, 256, 832-833.	1.8	7
268	CCL8/MCP-2 association analysis in patients with Alzheimer's disease and frontotemporal lobar degeneration. Journal of Neurology, 2009, 256, 1379-1381.	1.8	7
269	Balò's concentric sclerosis: still to be considered as a variant of multiple sclerosis?. Neurological Sciences, 2015, 36, 2277-2280.	0.9	7
270	The Novel GRN g.1159_1160delTG Mutation is Associated with Behavioral Variant Frontotemporal Dementia. Journal of Alzheimer's Disease, 2015, 44, 277-282.	1.2	7

#	Article	IF	CITATIONS
271	Non Fluent Variant of Primary Progressive Aphasia Due to the Novel GRN g.9543delA(IVS3-2delA) Mutation. Journal of Alzheimer's Disease, 2016, 54, 717-721.	1.2	7
272	Candidate gene analysis of SPARCL1 gene in patients with multiple sclerosis. Neuroscience Letters, 2007, 425, 173-176.	1.0	6
273	The functional MAOA-uVNTR promoter polymorphism in patients with frontotemporal dementia. European Journal of Neurology, 2008, 15, 637-639.	1.7	6
274	FUS/TLS Genetic Variability in Sporadic Frontotemporal Lobar Degeneration. Journal of Alzheimer's Disease, 2010, 19, 1317-1322.	1.2	6
275	C9ORF72 repeat expansion not detected in patients with multiple sclerosis. Neurobiology of Aging, 2014, 35, 1213.e1-1213.e2.	1.5	6
276	Rapidly progressive primary progressive aphasia and parkinsonism with novel <i>GRN</i> mutation. Movement Disorders, 2017, 32, 476-478.	2.2	6
277	Epigenetic regulatory modifications in genetic and sporadic frontotemporal dementia. Expert Review of Neurotherapeutics, 2018, 18, 469-475.	1.4	6
278	Inflammatory expression profile in peripheral blood mononuclear cells from patients with Nasu-Hakola Disease. Cytokine, 2019, 116, 115-119.	1.4	6
279	Cerebrospinal fluid glutamate changes in functional movement disorders. Npj Parkinson's Disease, 2020, 6, 37.	2.5	6
280	A Novel Study and Meta-Analysis of the Genetic Variation of the Serotonin Transporter Promoter in the Italian Population Do Not Support a Large Effect on Alzheimer's Disease Risk. International Journal of Alzheimer's Disease, 2011, 2011, 1-7.	1.1	5
281	Phenotypic Variability associated with the C9ORF72 Hexanucleotide Repeat Expansion: A Sporadic Case of Frontotemporal Lobar Degeneration with Prodromal Hyposmia and Predominant Semantic Deficits. Journal of Alzheimer's Disease, 2014, 40, 849-855.	1.2	5
282	MRI Helps Depict Clinically Undetectable Risk Factors in Advanced Stage Retinoblastomas. Neuroradiology Journal, 2015, 28, 52-61.	0.6	5
283	Effects of Multiple Genetic Loci on Age atÂOnset in Frontotemporal Dementia. Journal of Alzheimer's Disease, 2017, 56, 1271-1278.	1.2	4
284	Self-Awareness for Memory Impairment in Amnestic Mild Cognitive Impairment: A Longitudinal Study. American Journal of Alzheimer's Disease and Other Dementias, 2017, 32, 401-407.	0.9	4
285	C9ORF72 hexanucleotide repeat expansion frequency in patients with Paget's disease of bone. Neurobiology of Aging, 2020, 85, 154.e1-154.e3.	1.5	4
286	Usefulness of Multi-Parametric MRI for the Investigation of Posterior Cortical Atrophy. PLoS ONE, 2015, 10, e0140639.	1.1	4
287	Partial recovery after severe immune reconstitution inflammatory syndrome in a multiple sclerosis patient with progressive multifocal leukoencephalopathy. Immunotherapy, 2014, 6, 23-28.	1.0	3
288	Brain temperature in multiple sclerosis. Multiple Sclerosis Journal, 2014, 20, 894-896.	1.4	3

#	Article	IF	CITATIONS
289	Plasma Screening for Progranulin Mutations in Patients with Progressive Supranuclear Palsy and Corticobasal Syndromes. Journal of Alzheimer's Disease, 2016, 53, 445-449.	1.2	3
290	An Automated Toolbox to Predict Single Subject Atrophy in Presymptomatic Granulin Mutation Carriers. Journal of Alzheimer's Disease, 2022, , 1-14.	1.2	3
291	No association of IFI16 (interferon-inducible protein 16) variants with susceptibility to multiple sclerosis. Journal of Neuroimmunology, 2014, 271, 49-52.	1.1	2
292	Transmembrane Protein 106B Gene (TMEM106B) Variability and Influence on Progranulin Plasma Levels in Patients with Alzheimer's Disease. Journal of Alzheimer's Disease, 2014, 43, 757-761.	1.2	2
293	Frontotemporal Lobar Degeneration. , 2015, , 57-66.		2
294	Binge eating and fast cognitive worsening in an early-onset bvFTD patient carrying C9ORF72 expansion. Neurocase, 2015, 21, 543-547.	0.2	2
295	Profiling of Specific Gene Expression Pathways in Peripheral Cells from Prodromal Alzheimer's Disease Patients. Journal of Alzheimer's Disease, 2018, 61, 1289-1294.	1.2	2
296	A High Throughput, Multiplexed and Targeted Proteomic CSF Assay to Quantify Neurodegenerative Biomarkers and Apolipoprotein E Isoforms Status. Journal of Visualized Experiments, 2016, , .	0.2	2
297	Alzheimer's disease: from pathogenesis to novel therapeutic approaches. Therapy: Open Access in Clinical Medicine, 2009, 6, 259-277.	0.2	1
298	Cell-dependent kinase inhibitor 2A and 2B genetic variability in patients with Alzheimer's disease. Journal of Neurology, 2011, 258, 704-705.	1.8	1
299	Progress in multiple sclerosis research in the last year. Journal of Neurology, 2012, 259, 1497-1501.	1.8	1
300	Lack of Association between the GPR3 Gene and the Risk for Alzheimer's Disease. International Journal of Alzheimer's Disease, 2011, 2011, 1-3.	1.1	0
301	Disease-modifying drugs in multiple sclerosis: new oral options. Clinical Practice (London, England), 2012, 9, 315-327.	0.1	0
302	Frontotemporal Lobar Degeneration: Genetics and Clinical Phenotypes. , 2014, , 93-109.		0
303	Estrogens need insulin-like growth factor I cooperation to exert their neuroprotective effects in post-menopausal women. Journal of Endocrinological Investigation, 2013, 36, 97-103.	1.8	Ο