
Takashi Hisatomi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4793660/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting. Chemical Society Reviews, 2014, 43, 7520-7535.	18.7	3,748
2	Scalable water splitting on particulate photocatalyst sheets with a solar-to-hydrogen energy conversion efficiency exceeding 1%. Nature Materials, 2016, 15, 611-615.	13.3	1,311
3	Photocatalytic water splitting with a quantum efficiency of almost unity. Nature, 2020, 581, 411-414.	13.7	1,227
4	Reaction systems for solar hydrogen production via water splitting with particulate semiconductor photocatalysts. Nature Catalysis, 2019, 2, 387-399.	16.1	985
5	Photocatalytic solar hydrogen production from water on a 100-m2 scale. Nature, 2021, 598, 304-307.	13.7	728
6	Surface Modification of CoO _{<i>x</i>} Loaded BiVO ₄ Photoanodes with Ultrathin <i>p</i> -Type NiO Layers for Improved Solar Water Oxidation. Journal of the American Chemical Society, 2015, 137, 5053-5060.	6.6	542
7	A Particulate Photocatalyst Water-Splitting Panel for Large-Scale Solar Hydrogen Generation. Joule, 2018, 2, 509-520.	11.7	468
8	Highly efficient water splitting by a dual-absorber tandem cell. Nature Photonics, 2012, 6, 824-828.	15.6	437
9	Oxysulfide photocatalyst for visible-light-driven overall water splitting. Nature Materials, 2019, 18, 827-832.	13.3	422
10	Dynamics of photogenerated holes in surface modified α-Fe ₂ O ₃ photoanodes for solar water splitting. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 15640-15645.	3.3	413
11	Ultrathin films on copper(i) oxide water splitting photocathodes: a study on performance and stability. Energy and Environmental Science, 2012, 5, 8673.	15.6	401
12	Overall water splitting by Ta3N5 nanorod single crystals grown on the edges of KTaO3 particles. Nature Catalysis, 2018, 1, 756-763.	16.1	390
13	Photocatalytic Overall Water Splitting Promoted by Two Different Cocatalysts for Hydrogen and Oxygen Evolution under Visible Light. Angewandte Chemie - International Edition, 2010, 49, 4096-4099.	7.2	356
14	Particle suspension reactors and materials for solar-driven water splitting. Energy and Environmental Science, 2015, 8, 2825-2850.	15.6	344
15	Particulate Photocatalyst Sheets Based on Carbon Conductor Layer for Efficient Z-Scheme Pure-Water Splitting at Ambient Pressure. Journal of the American Chemical Society, 2017, 139, 1675-1683.	6.6	322
16	Ultrastable low-bias water splitting photoanodes via photocorrosion inhibition and in situ catalystÂregeneration. Nature Energy, 2017, 2, .	19.8	298
17	Photocatalytic Water Splitting Using Modified GaN:ZnO Solid Solution under Visible Light: Long-Time Operation and Regeneration of Activity. Journal of the American Chemical Society, 2012, 134, 8254-8259.	6.6	296
18	Enhancement in the Performance of Ultrathin Hematite Photoanode for Water Splitting by an Oxide Underlayer. Advanced Materials, 2012, 24, 2699-2702.	11.1	271

#	Article	IF	CITATIONS
19	Cathodic shift in onset potential of solar oxygen evolution on hematite by 13-group oxide overlayers. Energy and Environmental Science, 2011, 4, 2512.	15.6	269
20	Core/Shell Photocatalyst with Spatially Separated Coâ€Catalysts for Efficient Reduction and Oxidation of Water. Angewandte Chemie - International Edition, 2013, 52, 11252-11256.	7.2	254
21	Efficient Visibleâ€Lightâ€Driven Zâ€Scheme Overall Water Splitting Using a MgTa ₂ O _{6â^'<i>x</i>} N _{<i>y</i>} /TaON Heterostructure Photocatalyst for H ₂ Evolution. Angewandte Chemie - International Edition, 2015, 54, 8498-8501.	7.2	252
22	Core/Shell Structured La- and Rh-Codoped SrTiO ₃ as a Hydrogen Evolution Photocatalyst in Z-Scheme Overall Water Splitting under Visible Light Irradiation. Chemistry of Materials, 2014, 26, 4144-4150.	3.2	242
23	Flux-mediated doping of SrTiO ₃ photocatalysts for efficient overall water splitting. Journal of Materials Chemistry A, 2016, 4, 3027-3033.	5.2	224
24	Nanostructured WO ₃ /BiVO ₄ Photoanodes for Efficient Photoelectrochemical Water Splitting. Small, 2014, 10, 3692-3699.	5.2	217
25	Synthesis and Photocatalytic Activity of Perovskite Niobium Oxynitrides with Wide Visible‣ight Absorption Bands. ChemSusChem, 2011, 4, 74-78.	3.6	216
26	Photocatalytic Water-Splitting Reaction from Catalytic and Kinetic Perspectives. Catalysis Letters, 2015, 145, 95-108.	1.4	210
27	Enhanced Water Oxidation on Ta ₃ N ₅ Photocatalysts by Modification with Alkaline Metal Salts. Journal of the American Chemical Society, 2012, 134, 19993-19996.	6.6	206
28	Positive onset potential and stability of Cu ₂ O-based photocathodes in water splitting by atomic layer deposition of a Ga ₂ O ₃ buffer layer. Energy and Environmental Science, 2015, 8, 1493-1500.	15.6	196
29	Enhancement of Solar Hydrogen Evolution from Water by Surface Modification with CdS and TiO ₂ on Porous CuInS ₂ Photocathodes Prepared by an Electrodeposition–Sulfurization Method. Angewandte Chemie - International Edition, 2014, 53, 11808-11812.	7.2	181
30	Efficient Photocatalytic Water Splitting Using Al-Doped SrTiO ₃ Coloaded with Molybdenum Oxide and Rhodium–Chromium Oxide. ACS Catalysis, 2018, 8, 2782-2788.	5.5	180
31	Mg–Zr Cosubstituted Ta ₃ N ₅ Photoanode for Lower-Onset-Potential Solar-Driven Photoelectrochemical Water Splitting. Journal of the American Chemical Society, 2015, 137, 12780-12783.	6.6	176
32	Photoelectrochemical Oxidation of Water Using BaTaO ₂ N Photoanodes Prepared by Particle Transfer Method. Journal of the American Chemical Society, 2015, 137, 2227-2230.	6.6	167
33	Efficiency Accreditation and Testing Protocols for Particulate Photocatalysts toward Solar Fuel Production. Joule, 2021, 5, 344-359.	11.7	165
34	An Al-doped SrTiO ₃ photocatalyst maintaining sunlight-driven overall water splitting activity for over 1000Âh of constant illumination. Chemical Science, 2019, 10, 3196-3201.	3.7	163
35	H ₂ Evolution from Water on Modified Cu ₂ ZnSnS ₄ Photoelectrode under Solar Light. Applied Physics Express, 2010, 3, 101202.	1.1	154
36	Aspects of the Water Splitting Mechanism on (Ga _{1â``<i>x</i>} Zn _{<i>x</i>})(N _{1â``<i>x</i>} O _{<i>x</i>}) Photocatalyst Modified with Rh _{2â``<i>y</i>} Cr _{<i>y</i>} O ₃ Cocatalyst. Journal of Physical Chemistry C, 2009, 113, 21458-21466.	1.5	143

#	Article	IF	CITATIONS
37	Highly Active GaNâ€Stabilized Ta ₃ N ₅ Thinâ€Film Photoanode for Solar Water Oxidation. Angewandte Chemie - International Edition, 2017, 56, 4739-4743.	7.2	130
38	Enhancing Photocatalytic Activity of LaTiO ₂ N by Removal of Surface Reconstruction Layer. Nano Letters, 2014, 14, 1038-1041.	4.5	129
39	On the Solar to Hydrogen Conversion Efficiency of Photoelectrodes for Water Splitting. Journal of Physical Chemistry Letters, 2014, 5, 3330-3334.	2.1	128
40	Efficient Redox-Mediator-Free Z-Scheme Water Splitting Employing Oxysulfide Photocatalysts under Visible Light. ACS Catalysis, 2018, 8, 1690-1696.	5.5	127
41	Visible-Light-Driven Photocatalytic Water Splitting: Recent Progress and Challenges. Trends in Chemistry, 2020, 2, 813-824.	4.4	126
42	Photocatalytic oxygen evolution using BaNbO2N modified with cobalt oxide under photoexcitation up to 740 nm. Energy and Environmental Science, 2013, 6, 3595.	15.6	125
43	Sequential cocatalyst decoration on BaTaO2N towards highly-active Z-scheme water splitting. Nature Communications, 2021, 12, 1005.	5.8	124
44	Transparent, Conducting Nb:SnO ₂ for Host–Guest Photoelectrochemistry. Nano Letters, 2012, 12, 5431-5435.	4.5	122
45	Z-scheme water splitting using particulate semiconductors immobilized onto metal layers for efficient electron relay. Journal of Catalysis, 2015, 328, 308-315.	3.1	119
46	A Redoxâ€Mediatorâ€Free Solarâ€Driven Zâ€Scheme Waterâ€Splitting System Consisting of Modified Ta ₃ N ₅ as an Oxygenâ€Evolution Photocatalyst. Chemistry - A European Journal, 2013, 19, 7480-7486.	1.7	113
47	Visible Light-Driven Z-Scheme Water Splitting Using Oxysulfide H ₂ Evolution Photocatalysts. Journal of Physical Chemistry Letters, 2016, 7, 3892-3896.	2.1	101
48	Introductory lecture: sunlight-driven water splitting and carbon dioxide reduction by heterogeneous semiconductor systems as key processes in artificial photosynthesis. Faraday Discussions, 2017, 198, 11-35.	1.6	100
49	A Ga ₂ O ₃ underlayer as an isomorphic template for ultrathin hematite films toward efficient photoelectrochemical water splitting. Faraday Discussions, 2012, 155, 223-232.	1.6	95
50	Surface Modifications of (ZnSe) _{0.5} (CuGa _{2.5} Se _{4.25}) _{0.5} to Promote Photocatalytic Z-Scheme Overall Water Splitting. Journal of the American Chemical Society, 2021, 143, 10633-10641.	6.6	88
51	Enhancement of Photocatalytic Water Oxidation by the Morphological Control of LaTiO ₂ N and Cobalt Oxide Catalysts. Journal of Physical Chemistry C, 2014, 118, 16344-16351.	1.5	82
52	Linking in situ charge accumulation to electronic structure in doped SrTiO3 reveals design principles for hydrogen-evolving photocatalysts. Nature Materials, 2021, 20, 511-517.	13.3	82
53	Photocatalyst Sheets Composed of Particulate LaMg _{1/3} Ta _{2/3} O ₂ N and Mo-Doped BiVO ₄ for Z-Scheme Water Splitting under Visible Light. ACS Catalysis, 2016, 6, 7188-7196.	5.5	79
54	Transparent Ta ₃ N ₅ Photoanodes for Efficient Oxygen Evolution toward the Development of Tandem Cells. Angewandte Chemie - International Edition, 2019, 58, 2300-2304.	7.2	75

#	Article	IF	CITATIONS
55	Printable Photocatalyst Sheets Incorporating a Transparent Conductive Mediator for Z-Scheme Water Splitting. Joule, 2018, 2, 2667-2680.	11.7	74
56	Preparation of Crystallized Mesoporous Ta ₃ N ₅ Assisted by Chemical Vapor Deposition of Tetramethyl Orthosilicate. Chemistry of Materials, 2010, 22, 3854-3861.	3.2	70
57	Trapped State Sensitive Kinetics in LaTiO ₂ N Solid Photocatalyst with and without Cocatalyst Loading. Journal of the American Chemical Society, 2014, 136, 17324-17331.	6.6	70
58	Kinetic Assessment and Numerical Modeling of Photocatalytic Water Splitting toward Efficient Solar Hydrogen Production. Bulletin of the Chemical Society of Japan, 2012, 85, 647-655.	2.0	69
59	Photoelectrochemical Water Splitting on Particulate ANbO ₂ N (A = Ba, Sr) Photoanodes Prepared from Perovskite-Type ANbO ₃ . Chemistry of Materials, 2016, 28, 6869-6876.	3.2	68
60	Synthesis of Nanostructured BaTaO ₂ N Thin Films as Photoanodes for Solar Water Splitting. Journal of Physical Chemistry C, 2016, 120, 15758-15764.	1.5	68
61	Metal selenide photocatalysts for visible-light-driven <i>Z</i> -scheme pure water splitting. Journal of Materials Chemistry A, 2019, 7, 7415-7422.	5.2	67
62	Morphology-sensitive trapping states of photogenerated charge carriers on SrTiO3 particles studied by time-resolved visible to Mid-IR absorption spectroscopy: The effects of molten salt flux treatments. Journal of Photochemistry and Photobiology A: Chemistry, 2015, 313, 168-175.	2.0	64
63	Photoreduced Graphene Oxide as a Conductive Binder to Improve the Water Splitting Activity of Photocatalyst Sheets. Advanced Functional Materials, 2016, 26, 7011-7019.	7.8	62
64	Simultaneously Tuning the Defects and Surface Properties of Ta ₃ N ₅ Nanoparticles by Mg–Zr Codoping for Significantly Accelerated Photocatalytic H ₂ Evolution. Journal of the American Chemical Society, 2021, 143, 10059-10064.	6.6	62
65	Improving the photoelectrochemical activity of La ₅ Ti ₂ CuS ₅ O ₇ for hydrogen evolution by particle transfer and doping. Energy and Environmental Science, 2014, 7, 2239-2242.	15.6	61
66	Photocatalytic property of metal ion added SrTiO3 to Overall H2O splitting. Applied Catalysis A: General, 2016, 521, 227-232.	2.2	61
67	The 2022 solar fuels roadmap. Journal Physics D: Applied Physics, 2022, 55, 323003.	1.3	58
68	Origin of the overall water splitting activity of Ta ₃ N ₅ revealed by ultrafast transient absorption spectroscopy. Chemical Science, 2019, 10, 5353-5362.	3.7	57
69	Boosting photocatalytic overall water splitting by Co doping into Mn ₃ O ₄ nanoparticles as oxygen evolution cocatalysts. Nanoscale, 2018, 10, 10420-10427.	2.8	56
70	Efficient Solarâ€Driven Water Oxidation over Perovskiteâ€Type BaNbO ₂ N Photoanodes Absorbing Visible Light up to 740 nm. Advanced Energy Materials, 2018, 8, 1800094.	10.2	56
71	Revealing the role of the Rh valence state, La doping level and Ru cocatalyst in determining the H ₂ evolution efficiency in doped SrTiO ₃ photocatalysts. Sustainable Energy and Fuels, 2019, 3, 208-218.	2.5	56
72	Effective Driving of Ag-Loaded and Al-Doped SrTiO ₃ under Irradiation at λ > 300 nm for the Photocatalytic Conversion of CO ₂ by H ₂ O. ACS Applied Energy Materials, 2020, 3, 1468-1475.	2.5	56

#	Article	IF	CITATIONS
73	A titanium-based oxysulfide photocatalyst: La5Ti2MS5O7 (M = Ag, Cu) for water reduction and oxidation. Physical Chemistry Chemical Physics, 2012, 14, 15475.	1.3	55
74	La ₅ Ti ₂ Cu _{1â^'x} Ag _x S ₅ O ₇ photocathe operating at positive potentials during photoelectrochemical hydrogen evolution under irradiation of up to 710 nm. Energy and Environmental Science, 2015, 8, 3354-3362.	odes 15.6	55
75	Isotopic and kinetic assessment of photocatalytic water splitting on Zn-added Ga2O3 photocatalyst loaded with Rh2â^'yCryO3 cocatalyst. Chemical Physics Letters, 2010, 486, 144-146.	1.2	53
76	Effect of post-treatments on the photocatalytic activity of Sm2Ti2S2O5 for the hydrogen evolution reaction. Physical Chemistry Chemical Physics, 2014, 16, 12051.	1.3	53
77	Effect of Hydrogen and Oxygen Evolution Cocatalysts on Photocatalytic Activity of GaN:ZnO. European Journal of Inorganic Chemistry, 2014, 2014, 767-772.	1.0	52
78	Construction of Spatial Charge Separation Facets on BaTaO ₂ N Crystals by Flux Growth Approach for Visible-Light-Driven H ₂ Production. ACS Applied Materials & Interfaces, 2019, 11, 22264-22271.	4.0	51
79	Photoelectrochemical properties of SrNbO ₂ N photoanodes for water oxidation fabricated by the particle transfer method. Faraday Discussions, 2014, 176, 213-223.	1.6	49
80	Core–Shell‣tructured LaTaON ₂ Transformed from LaKNaTaO ₅ Plates for Enhanced Photocatalytic H ₂ Evolution. Angewandte Chemie - International Edition, 2019, 58, 10666-10670.	7.2	49
81	Overall water splitting by photoelectrochemical cells consisting of (ZnSe) _{0.85} (CuIn _{0.7} Ga _{0.3} Se ₂) _{0.15} photocathodes and BiVO ₄ photoanodes. Chemical Communications, 2017, 53, 11674-11677.	2.2	47
82	The Effects of Starting Materials in the Synthesis of (Ga _{1â^'<i>x</i>} Zn _{<i>x</i>})(N _{1â^'<i>x</i>} O _{<i>x</i>}) Solid Solution on Its Photocatalytic Activity for Overall Water Splitting under Visible Light. ChemSusChem, 2009, 2, 336-343.	3.6	46
83	A SrTiO ₃ photoanode prepared by the particle transfer method for oxygen evolution from water with high quantum efficiencies. Chemical Communications, 2016, 52, 5011-5014.	2.2	46
84	Particulate photocatalyst sheets for Z-scheme water splitting: advantages over powder suspension and photoelectrochemical systems and future challenges. Faraday Discussions, 2017, 197, 491-504.	1.6	45
85	Perovskite-Type LaTiO2N Oxynitrides for Solar Water Splitting: Influence of the Synthesis Conditions. Energy Procedia, 2012, 22, 61-66.	1.8	44
86	Structural and photocatalytic properties of perovskite-type (La,Ca)Ti(O,N)3 prepared from A-site deficient precursors. Journal of Materials Chemistry, 2012, 22, 17906.	6.7	42
87	The Effects of Preparation Conditions for a BaNbO ₂ N Photocatalyst on Its Physical Properties. ChemSusChem, 2014, 7, 2016-2021.	3.6	42
88	Highly Efficient Water Oxidation Photoanode Made of Surface Modified LaTiO ₂ N Particles. Small, 2016, 12, 5468-5476.	5.2	42
89	Effects of flux synthesis on SrNbO ₂ N particles for photoelectrochemical water splitting. Journal of Materials Chemistry A, 2016, 4, 7658-7664.	5.2	42
90	Fabrication of photocatalyst panels and the factors determining their activity for water splitting. Catalysis Science and Technology, 2014, 4, 325-328.	2.1	40

#	Article	IF	CITATIONS
91	Bulky crystalline BiVO ₄ thin films for efficient solar water splitting. Journal of Materials Chemistry A, 2016, 4, 9858-9864.	5.2	40
92	Rational Interpretation of Correlated Kinetics of Mobile and Trapped Charge Carriers: Analysis of Ultrafast Carrier Dynamics in BiVO4. Journal of Physical Chemistry C, 2017, 121, 19044-19052.	1.5	39
93	Understanding the visible-light photocatalytic activity of GaN:ZnO solid solution: the role of Rh _{2â^'y} Cr _y O ₃ cocatalyst and charge carrier lifetimes over tens of seconds. Chemical Science, 2018, 9, 7546-7555.	3.7	38
94	Site-selective photodeposition of Pt on a particulate Sc-La5Ti2CuS5O7 photocathode: evidence for one-dimensional charge transfer. Chemical Communications, 2015, 51, 4302-4305.	2.2	36
95	Photoanodic and photocathodic behaviour of La ₅ Ti ₂ CuS ₅ 7 electrodes in the water splitting reaction. Chemical Science, 2015, 6, 4513-4518.	3.7	36
96	Application of LaMg1/3Ta2/3O2N as a hydrogen evolution photocatalyst of a photocatalyst sheet for Z-scheme water splitting. Applied Catalysis A: General, 2016, 521, 26-33.	2.2	36
97	Enhanced Overall Water Splitting by a Zirconiumâ€Doped TaONâ€Based Photocatalyst. Angewandte Chemie - International Edition, 2022, 61, e202116573.	7.2	36
98	Efficient photocatalytic oxygen evolution using BaTaO ₂ N obtained from nitridation of perovskite-type oxide. Journal of Materials Chemistry A, 2020, 8, 1127-1130.	5.2	35
99	Bimetallic Synergy in Ultrafine Cocatalyst Alloy Nanoparticles for Efficient Photocatalytic Water Splitting. Advanced Functional Materials, 2022, 32, .	7.8	35
100	Dual Ag/Co cocatalyst synergism for the highly effective photocatalytic conversion of CO ₂ by H ₂ O over Al-SrTiO ₃ . Chemical Science, 2021, 12, 4940-4948.	3.7	34
101	Progress in the demonstration and understanding of water splitting using particulate photocatalysts. Current Opinion in Electrochemistry, 2017, 2, 148-154.	2.5	33
102	Solar-Driven Water Splitting over a BaTaO ₂ N Photoanode Enhanced by Annealing in Argon. ACS Applied Energy Materials, 2019, 2, 5777-5784.	2.5	33
103	Physicochemical properties and photocatalytic H2 evolution activity of Rh-doped La2Ti2O7 prepared by molten salt synthesis. Catalysis Science and Technology, 2013, 3, 2098.	2.1	32
104	Sunlightâ€Driven Overall Water Splitting by the Combination of Surfaceâ€Modified La ₅ Ti ₂ Cu _{0.9} Ag _{0.1} S ₅ O ₇ and BaTaO ₂ N Photoelectrodes. ChemPhotoChem, 2017, 1, 167-172.	1.5	32
105	Fabrication of Single-Crystalline BaTaO ₂ N from Chloride Fluxes for Photocatalytic H ₂ Evolution under Visible Light. Crystal Growth and Design, 2020, 20, 255-261.	1.4	32
106	Minimizing energy demand and environmental impact for sustainable NH3 and H2O2 production—A perspective on contributions from thermal, electro-, and photo-catalysis. Applied Catalysis A: General, 2020, 594, 117419.	2.2	32
107	Highly Active GaNâ€Stabilized Ta ₃ N ₅ Thinâ€Film Photoanode for Solar Water Oxidation. Angewandte Chemie, 2017, 129, 4817-4821.	1.6	31
108	Unveiling charge dynamics of visible light absorbing oxysulfide for efficient overall water splitting. Nature Communications, 2021, 12, 7055.	5.8	31

#	Article	lF	CITATIONS
109	Visibleâ€Lightâ€Driven Photocatalytic Zâ€Scheme Overall Water Splitting in La ₅ Ti ₂ AgS ₅ O ₇ â€based Powderâ€Suspension System. ChemSusChem, 2019, 12, 1906-1910.	3.6	29
110	Mutually-dependent kinetics and energetics of photocatalyst/co-catalyst/two-redox liquid junctions. Energy and Environmental Science, 2020, 13, 162-173.	15.6	29
111	Effect of particle size of La5Ti2CuS5O7on photoelectrochemical properties in solar hydrogen evolution. Journal of Materials Chemistry A, 2016, 4, 4848-4854.	5.2	28
112	Particulate photocatalyst sheets based on non-oxide semiconductor materials for water splitting under visible light irradiation. Catalysis Science and Technology, 2018, 8, 3918-3925.	2.1	27
113	The effects of annealing barium niobium oxynitride in argon on photoelectrochemical water oxidation activity. Journal of Materials Chemistry A, 2019, 7, 493-502.	5.2	27
114	Kinetics of Distance-Dependent Recombination between Geminate Charge Carriers by Diffusion under Coulomb Interaction. Journal of Physical Chemistry C, 2015, 119, 5364-5373.	1.5	26
115	Thin film transfer for the fabrication of tantalum nitride photoelectrodes with controllable layered structures for water splitting. Chemical Science, 2016, 7, 5821-5826.	3.7	26
116	Optimized Synthesis of Agâ€Modified Alâ€Doped SrTiO ₃ Photocatalyst for the Conversion of CO ₂ Using H ₂ O as an Electron Donor. ChemistrySelect, 2020, 5, 8779-8786.	0.7	26
117	Highly Selective Photocatalytic Conversion of Carbon Dioxide by Water over Al-SrTiO ₃ Photocatalyst Modified with Silver–Metal Dual Cocatalysts. ACS Sustainable Chemistry and Engineering, 2021, 9, 9327-9335.	3.2	26
118	Zinc and Titanium Spinel Oxynitride (ZnxTiOyNz) as a d0–d10Complex Photocatalyst with Visible Light Activity. Chemistry Letters, 2007, 36, 558-559.	0.7	25
119	Crystal Structure, Electronic Structure, and Photocatalytic Activity of Oxysuifides: La ₂ Ta ₂ ZrS ₂ O ₈ , La ₂ Ta ₂ TiS ₂ O ₈ , and La ₂ Nb ₂ TiS ₂ O ₈ . Inorganic Chemistry, 2016, 55, 2<57	1.9	25
120	3674-3679. Efficient hydrogen evolution on (CuInS ₂) _x (ZnS) _{1â^'x} solid solution-based photocathodes under simulated sunlight. Chemical Communications, 2019, 55, 470-473.	2.2	25
121	CdTe-Based Photoanode for Oxygen Evolution from Water under Simulated Sunlight. Journal of Physical Chemistry Letters, 2017, 8, 5712-5717.	2.1	23
122	Activation of a particulate Ta ₃ N ₅ water-oxidation photoanode with a GaN hole-blocking layer. Sustainable Energy and Fuels, 2018, 2, 73-78.	2.5	23
123	Investigation of cocatalysts on silver-modified Sm2Ti2S2O5 photocatalyst for water reduction and oxidation under visible light irradiation. Catalysis Today, 2012, 185, 253-258.	2.2	21
124	Investigation on nitridation processes of Sr2Nb2O7 and SrNbO3 to SrNbO2N for photoelectrochemical water splitting. Scientific Reports, 2018, 8, 15849.	1.6	21
125	Metal selenides for photocatalytic Z-scheme pure water splitting mediated by reduced graphene oxide. Chinese Journal of Catalysis, 2019, 40, 1668-1672.	6.9	21
126	Regression model for stabilization energies associated with anion ordering in perovskite-type oxynitrides. Journal of Energy Chemistry, 2019, 36, 7-14.	7.1	21

#	Article	IF	CITATIONS
127	Facet engineering of LaNbON ₂ transformed from LaKNaNbO ₅ for enhanced photocatalytic O ₂ evolution. Journal of Materials Chemistry A, 2020, 8, 11743-11751.	5.2	21
128	Enhanced Photoelectrochemical Water Oxidation from CdTe Photoanodes Annealed with CdCl ₂ . Angewandte Chemie - International Edition, 2020, 59, 13800-13806.	7.2	21
129	Efficient photocatalytic hydrogen evolution on single-crystalline metal selenide particles with suitable cocatalysts. Chemical Science, 2020, 11, 6436-6441.	3.7	21
130	Hydrogen Production by Photocatalytic Water Splitting. Journal of the Japan Petroleum Institute, 2013, 56, 280-287.	0.4	19
131	Synthesis of Y2Ti2O5S2 by thermal sulfidation for photocatalytic water oxidation and reduction under visible light irradiation. Research on Chemical Intermediates, 2021, 47, 225-234.	1.3	19
132	Effects of flux treatment on morphology of single-crystalline BaNbO ₂ N particles. CrystEngComm, 2016, 18, 3186-3190.	1.3	18
133	"A bridge over troubled gapsâ€i up-conversion driven photocatalysis for hydrogen generation and pollutant degradation by near-infrared excitation. Chemical Communications, 2018, 54, 1905-1908.	2.2	18
134	Plate-like Sm ₂ Ti ₂ S ₂ O ₅ Particles Prepared by a Flux-Assisted One-Step Synthesis for the Evolution of O ₂ from Aqueous Solutions by Both Photocatalytic and Photoelectrochemical Reactions. Journal of Physical Chemistry C, 2018, 122, 13492-13499.	1.5	18
135	Effects of annealing conditions on the oxygen evolution activity of a BaTaO2N photocatalyst loaded with cobalt species. Catalysis Today, 2020, 354, 204-210.	2.2	18
136	Effect of Mg ²⁺ substitution on the photocatalytic water splitting activity of LaMg _x Nb _{1â^'x} O _{1+3x} N _{2â^'3x} . Journal of Materials Chemistry A, 2021, 9, 8655-8662.	5.2	18
137	Enhancement of the H ₂ evolution activity of La ₅ Ti ₂ Cu(S _{1â°x} Se _x) ₅ O ₇ photocatalysts by coloading Pt and NiS cocatalysts. Journal of Materials Chemistry A, 2017, 5, 6106-6112.	5.2	17
138	Enhancement of Charge Separation and Hydrogen Evolution on Particulate La ₅ Ti ₂ CuS ₅ O ₇ Photocathodes by Surface Modification. Journal of Physical Chemistry Letters, 2017, 8, 375-379.	2.1	17
139	Effects of Se Incorporation in La ₅ Ti ₂ CuS ₅ O ₇ by Annealing on Physical Properties and Photocatalytic H ₂ Evolution Activity. ACS Applied Materials & Interfaces, 2019, 11, 5595-5601.	4.0	17
140	Transient Kinetics of O ₂ Evolution in Photocatalytic Water-Splitting Reaction. ACS Catalysis, 2020, 10, 13159-13164.	5.5	17
141	Use of metamodels for rapid discovery of narrow bandgap oxide photocatalysts. IScience, 2021, 24, 103068.	1.9	17
142	Synthesis and Photocatalytic Activity of La ₅ Ti ₂ Cu(S _{1â^'<i>x</i>} Se _{<i>x</i>}) ₅ O ₇ Solid Solutions for H ₂ Production under Visible Light Irradiation. ChemPhotoChem, 2017, 1, 265-272.	sub> 1.5	16
143	Investigation of charge separation in particulate oxysulfide and oxynitride photoelectrodes by surface photovoltage spectroscopy. Chemical Physics Letters, 2017, 683, 140-144.	1.2	16
144	Cocatalyst engineering of a narrow bandgap Ga-La ₅ Ti ₂ Cu _{0.9} Ag _{0.1} O ₇ S ₅ photocatalyst towards effectively enhanced water splitting. Journal of Materials Chemistry A, 2021, 9, 27485-27492.	5.2	16

#	Article	IF	CITATIONS
145	Platy BaTaO ₂ N Crystals Fabricated from K ₂ CO ₃ –KCl Binary Flux for Photocatalytic H ₂ Evolution. ACS Applied Energy Materials, 2020, 3, 10669-10675.	2.5	15
146	Gas phase photocatalytic water splitting of moisture in ambient air: Toward reagent-free hydrogen production. Journal of Photochemistry and Photobiology A: Chemistry, 2020, 401, 112757.	2.0	15
147	Photocatalytic activity of ZnO/GaP _{1â^'x} N _x for water splitting. Journal of Materials Chemistry A, 2015, 3, 18083-18089.	5.2	14
148	Distinguishing the effects of altered morphology and size on the visible light-induced water oxidation activity and photoelectrochemical performance of BaTaO ₂ N crystal structures. Faraday Discussions, 2019, 215, 227-241.	1.6	14
149	Needlelike Crystal Growth and Anisotropic Photochemical Reactivity of Ta ₃ N ₅ Synthesized in Vacuo. Journal of Physical Chemistry C, 2009, 113, 17151-17155.	1.5	13
150	Effects of interfacial layers on the photoelectrochemical properties of tantalum nitride photoanodes for solar water splitting. Journal of Materials Chemistry A, 2016, 4, 13837-13843.	5.2	13
151	La 5 Ti 2 Cu 0.9 Ag 0.1 S 5 O 7 Modified with a Molecular Ni Catalyst for Photoelectrochemical H 2 Generation. Chemistry - A European Journal, 2018, 24, 18393-18397.	1.7	13
152	A Semitransparent Nitride Photoanode Responsive up to <i>λ</i> =600â€nm Based on a Carbon Nanotube Thin Film Electrode. ChemPhotoChem, 2019, 3, 521-524.	1.5	13
153	A Na-containing Pt cocatalyst for efficient visible-light-induced hydrogen evolution on BaTaO ₂ N. Journal of Materials Chemistry A, 2021, 9, 13851-13854.	5.2	13
154	Characterization of Spinel Zinc Titanium Nitride Oxide as a Visible Light Driven Photocatalyst. Bulletin of the Chemical Society of Japan, 2008, 81, 1647-1656.	2.0	12
155	Self-activated Rh–Zr mixed oxide as a nonhazardous cocatalyst for photocatalytic hydrogen evolution. Chemical Science, 2020, 11, 6862-6867.	3.7	12
156	Rationalizing long-lived photo-excited carriers in photocatalyst (La5Ti2CuS5O7) in terms of one-dimensional carrier transport. Chemical Physics, 2016, 476, 9-16.	0.9	11
157	Investigation of the enhanced photocathodic activity of La5Ti2CuS5O7photocathodes in H2evolution by synchrotron radiation nanospectroscopy. Nanoscale, 2016, 8, 18893-18896.	2.8	11
158	Synthesis of Concentrated Methylcyclohexane as Hydrogen Carrier through Photoelectrochemical Conversion of Toluene and Water. ChemSusChem, 2017, 10, 659-663.	3.6	11
159	Zâ€5cheme Water Splitting under Nearâ€Ambient Pressure using a Zirconium Oxide Coating on Printable Photocatalyst Sheets. ChemSusChem, 2020, 13, 4906-4910.	3.6	10
160	Efficient photoelectrochemical hydrogen production over CuInS ₂ photocathodes modified with amorphous Ni-MoS _x operating in a neutral electrolyte. Sustainable Energy and Fuels, 2020, 4, 1607-1611.	2.5	10
161	Synthesis of a Ga-doped La5Ti2Cu0.9Ag0.107S5 photocatalyst by thermal sulfidation for hydrogen evolution under visible light. Journal of Catalysis, 2021, 399, 230-236.	3.1	10
162	Transparent Ta ₃ N ₅ Photoanodes for Efficient Oxygen Evolution toward the Development of Tandem Cells. Angewandte Chemie, 2019, 131, 2322-2326.	1.6	9

#	Article	IF	CITATIONS
163	Shifting the NIR into the UV-blue: Up-conversion boosted photocatalysis. Optical Materials, 2018, 83, 315-320.	1.7	9
164	Conversion of Toluene and Water to Methylcyclohexane and Oxygen using Niobiumâ€Đoped Strontium Titanate Photoelectrodes. ChemSusChem, 2014, 7, 2690-2694.	3.6	8
165	Effects of Calcination Temperature on the Physical Properties and Hydrogen Evolution Activities of La ₅ Ti ₂ Cu(S _{1â€} <i>_x</i> Se <i>_x</i>) ₅ <td>)>Ωxsub></td> <td>7 8/sub></td>)>Ωxsub>	7 8 /sub>
166	Core–Shell‣tructured LaTaON ₂ Transformed from LaKNaTaO ₅ Plates for Enhanced Photocatalytic H ₂ Evolution. Angewandte Chemie, 2019, 131, 10776-10780.	1.6	8
167	Photoelectrochemical Solar Cells Consisting of a Pt-Modified CdS Photoanode and an Fe(ClO ₄) ₂ /Fe(ClO ₄) ₃ Redox Shuttle in a Nonaqueous Electrolyte. Journal of Physical Chemistry C, 2016, 120, 10781-10790.	1.5	7
168	Preface to Special Issue of <i>ChemSusChem</i> —Water Splitting: From Theory to Practice. ChemSusChem, 2019, 12, 1771-1774.	3.6	7
169	Enhanced Photoelectrochemical Water Oxidation from CdTe Photoanodes Annealed with CdCl 2. Angewandte Chemie, 2020, 132, 13904-13910.	1.6	7
170	Transient Absorption Spectroscopy Reveals Performance-Limiting Factors in a Narrow-Bandgap Oxysulfide La ₅ (Ti _{0.99} Mg _{0.01}) ₂ CuS ₅ O _{6.99} Photocatalyst for H ₂ Generation. Journal of Physical Chemistry C, 2019, 123, 14246-14252.	1.5	6
171	A one-step synthesis of a Ta ₃ N ₅ nanorod photoanode from Ta plates and NH ₄ Cl powder for photoelectrochemical water oxidation. Chemical Communications, 2020, 56, 11843-11846.	2.2	6
172	Synthesis and Characterization of La (Ti,Nb)(O,N)3 for Photocatalytic Water Oxidation. Energy Procedia, 2012, 22, 41-47.	1.8	4
173	<i>Ab initio</i> density functional theory calculation of La ₅ Ti ₂ Cu _{1â[^]<i>x</i>} Ag _{<i>x</i>} S ₅ O _{7solution semiconductor photocatalysts for water splitting. Journal Physics D: Applied Physics, 2017, 50, 234004.}	ub>solid 1.3	3
174	Optimal Metal Oxide Deposition Conditions and Properties for the Enhancement of Hydrogen Evolution over Particulate La ₅ Ti ₂ Cu _{1â[^]<i>x</i>} Ag _{<i>x</i>} S ₅ O _{7Photocathodes. ChemPhotoChem, 2018, 2, 234-239.}	ub>	3
175	Direct observation of hydrogen bubble generation on photocatalyst particles by in situ electron microscopy. Chemical Physics Letters, 2018, 706, 564-567.	1.2	3
176	Microelectrode-based transient amperometry of O2 adsorption and desorption on a SrTiO3 photocatalyst excited under water. Physical Chemistry Chemical Physics, 2021, 23, 19386-19393.	1.3	3
177	Enhanced Overall Water Splitting by a Zirconiumâ€Doped TaONâ€Based Photocatalyst. Angewandte Chemie, 2022, 134, .	1.6	2
178	Doped semiconductor photocatalysts. , 2021, , .		1
179	Preface: Photocatalysis. Applied Catalysis A: General, 2016, 521, 1.	2.2	0
180	Developments and Trends of the Photocatalyst ~Hydrogen Production Technologies based on Particulate Photocatalysts. Journal of the Institute of Electrical Engineers of Japan, 2018, 138, 598-601.	0.0	0

#	Article	IF	CITATIONS
181	Oxygen Evolution Activity of LaNbN2O-Based Photocatalysts Obtained from Nitridation of a Precursor Oxide Structurally Modified by Incorporating Volatile Elements. Catalysts, 2021, 11, 566.	1.6	0
182	(Invited) Particulate Photocatalysts with Perovskite-Type Structures and Their Application in Water Splitting. ECS Meeting Abstracts, 2021, MA2021-01, 1272-1272.	0.0	0
183	Visible-Light-Driven Water Splitting Using Perovskite-Type Oxynitride Photoanodes. ECS Meeting Abstracts, 2019, , .	0.0	0
184	Physical properties and photocatalytic activity of pulverized Ga-doped La5Ti2Cu0.9Ag0.1O7S5 powder. Materials Letters, 2022, 319, 132290.	1.3	0