
John Paul Bolam

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4793473/publications.pdf Version: 2024-02-01

IOHN PALL ROLAM

#	Article	IF	CITATIONS
1	Special Issue Editorial: Basal Ganglia/Movement Disorders. European Journal of Neuroscience, 2021, 53, 2045-2048.	1.2	0
2	Editorial Comment: Gender diversity in neuroscience: Ongoing challenges for a field in flux. European Journal of Neuroscience, 2019, 50, 3085-3088.	1.2	1
3	Special issue in honour of the first editor of <i><scp>EJN</scp></i> , Ray Guillery. European Journal of Neuroscience, 2019, 49, 883-883.	1.2	0
4	Papers arising from the 12th International Basal Ganglia Society Meeting. March 26th–30th 2017, MA©rida, Yucatán, México. European Journal of Neuroscience, 2019, 49, 591-592.	1.2	0
5	Rethinking the Pedunculopontine Nucleus: From Cellular Organization to Function. Neuron, 2017, 94, 7-18.	3.8	192
6	The European Journal of Neuroscience's mission to increase the visibility and recognition of women in science. European Journal of Neuroscience, 2017, 46, 2427-2428.	1.2	19
7	Characterization of the axon initial segment of mice substantia nigra dopaminergic neurons. Journal of Comparative Neurology, 2017, 525, 3529-3542.	0.9	28
8	Transparent review at the European Journal of Neuroscience: experiences one year on. European Journal of Neuroscience, 2017, 46, 2647-2647.	1.2	3
9	On open access, special issues and strategies for increasing the readership of your neuroscience research. European Journal of Neuroscience, 2017, 46, 2791-2792.	1.2	0
10	Extrinsic Sources of Cholinergic Innervation of the Striatal Complex: A Whole-Brain Mapping Analysis. Frontiers in Neuroanatomy, 2016, 10, 1.	0.9	128
11	Axon terminals from the nucleus isthmi pars parvocellularis control the ascending retinotectofugal output through direct synaptic contact with tectal ganglion cell dendrites. Journal of Comparative Neurology, 2016, 524, 362-379.	0.9	14
12	A few simple steps to improve the description of group results in neuroscience. European Journal of Neuroscience, 2016, 44, 2647-2651.	1.2	64
13	Segregated cholinergic transmission modulates dopamine neurons integrated in distinct functional circuits. Nature Neuroscience, 2016, 19, 1025-1033.	7.1	122
14	Representation of spontaneous movement by dopaminergic neurons is cell-type selective and disrupted in parkinsonism. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E2180-8.	3.3	145
15	<i>LRRK2</i> BAC transgenic rats develop progressive, L-DOPA-responsive motor impairment, and deficits in dopamine circuit function. Human Molecular Genetics, 2016, 25, 951-963.	1.4	58
16	Local and afferent synaptic pathways in the striatal microcircuitry. Current Opinion in Neurobiology, 2015, 33, 182-187.	2.0	100
17	Impaired intracellular trafficking defines early Parkinson's disease. Trends in Neurosciences, 2015, 38, 178-188.	4.2	175
18	A Major External Source of Cholinergic Innervation of the Striatum and Nucleus Accumbens Originates in the Brainstem. Journal of Neuroscience, 2014, 34, 4509-4518.	1.7	267

John Paul Bolam

#	Article	IF	CITATIONS
19	The energy cost of action potential propagation in dopamine neurons: clues to susceptibility in Parkinson's disease. Frontiers in Computational Neuroscience, 2013, 7, 13.	1.2	264
20	Dichotomous Organization of the External Globus Pallidus. Neuron, 2012, 74, 1075-1086.	3.8	367
21	Living on the edge with too many mouths to feed: Why dopamine neurons die. Movement Disorders, 2012, 27, 1478-1483.	2.2	343
22	Differential Modulation of Excitatory and Inhibitory Striatal Synaptic Transmission by Histamine. Journal of Neuroscience, 2011, 31, 15340-15351.	1.7	113
23	A Dopaminergic Axon Lattice in the Striatum and Its Relationship with Cortical and Thalamic Terminals. Journal of Neuroscience, 2008, 28, 11221-11230.	1.7	157
24	Localization of GABA receptors in the basal ganglia. Progress in Brain Research, 2007, 160, 229-243.	0.9	43
25	A Single-Cell Analysis of Intrinsic Connectivity in the Rat Globus Pallidus. Journal of Neuroscience, 2007, 27, 6352-6362.	1.7	121
26	Functional presynaptic HCN channels in the rat globus pallidus. European Journal of Neuroscience, 2007, 25, 2081-2092.	1.2	46
27	Changes in Functional Connectivity within the Rat Striatopallidal Axis during Global Brain Activation In Vivo. Journal of Neuroscience, 2006, 26, 6318-6329.	1.7	68
28	Functional diversity and specificity of neostriatal interneurons. Current Opinion in Neurobiology, 2004, 14, 685-692.	2.0	439
29	Subcellular localization of GABAB receptor subunits in rat globus pallidus. Journal of Comparative Neurology, 2004, 474, 340-352.	0.9	47
30	The subcellular localization of GABAB receptor subunits in the rat substantia nigra. European Journal of Neuroscience, 2003, 18, 3279-3293.	1.2	55
31	Synaptic Convergence of Motor and Somatosensory Cortical Afferents onto GABAergic Interneurons in the Rat Striatum. Journal of Neuroscience, 2002, 22, 8158-8169.	1.7	177
32	Synaptic localization of GABAAreceptor subunits in the substantia nigra of the rat: effects of quinolinic acid lesions of the striatum. European Journal of Neuroscience, 2002, 15, 1961-1975.	1.2	26
33	Presynaptic localisation of the nicotinic acetylcholine receptor ?2 subunit immunoreactivity in rat nigrostriatal dopaminergic neurones. Journal of Comparative Neurology, 2001, 439, 235-247.	0.9	158
34	Synaptic localization of GABAA receptor subunits in the striatum of the rat. Journal of Comparative Neurology, 2000, 416, 158-172.	0.9	79
35	Selective Innervation of Neostriatal Interneurons by a Subclass of Neuron in the Globus Pallidus of the Rat. Journal of Neuroscience, 1998, 18, 9438-9452.	1.7	316
36	Cellular, Subcellular, and Subsynaptic Distribution of AMPA-Type Glutamate Receptor Subunits in the Neostriatum of the Rat. Journal of Neuroscience, 1997, 17, 819-833.	1.7	272