Yongliang Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4793098/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	High oxygen-reduction activity and durability of nitrogen-doped graphene. Energy and Environmental Science, 2011, 4, 760.	30.8	1,153
2	Scalable 2D Hierarchical Porous Carbon Nanosheets for Flexible Supercapacitors with Ultrahigh Energy Density. Advanced Materials, 2018, 30, 1706054.	21.0	405
3	Tin Oxide with Controlled Morphology and Crystallinity by Atomic Layer Deposition onto Graphene Nanosheets for Enhanced Lithium Storage. Advanced Functional Materials, 2012, 22, 1647-1654.	14.9	384
4	Challenges and opportunities of nanostructured materials for aprotic rechargeable lithium–air batteries. Nano Energy, 2013, 2, 443-467.	16.0	315
5	Superior energy capacity of graphene nanosheets for a nonaqueous lithium-oxygen battery. Chemical Communications, 2011, 47, 9438.	4.1	293
6	Nitrogen-doped carbon nanotubes as cathode for lithium–air batteries. Electrochemistry Communications, 2011, 13, 668-672.	4.7	261
7	Robust SnO _{2â^'<i>x</i>} Nanoparticleâ€Impregnated Carbon Nanofibers with Outstanding Electrochemical Performance for Advanced Sodiumâ€Ion Batteries. Angewandte Chemie - International Edition, 2018, 57, 8901-8905.	13.8	252
8	Nitrogen-doped graphene nanosheets as cathode materials with excellent electrocatalytic activity for high capacity lithium-oxygen batteries. Electrochemistry Communications, 2012, 18, 12-15.	4.7	248
9	Effect of support on the activity of Pd electrocatalyst for ethanol oxidation. Journal of Power Sources, 2006, 163, 371-375.	7.8	184
10	New Strategy for Polysulfide Protection Based on Atomic Layer Deposition of TiO ₂ onto Ferroelectricâ€Encapsulated Cathode: Toward Ultrastable Freeâ€Standing Room Temperature Sodium–Sulfur Batteries. Advanced Functional Materials, 2018, 28, 1705537.	14.9	167
11	High concentration nitrogen doped carbon nanotube anodes with superior Li+ storage performance for lithium rechargeable battery application. Journal of Power Sources, 2012, 197, 238-245.	7.8	158
12	On rechargeability and reaction kinetics of sodium–air batteries. Energy and Environmental Science, 2014, 7, 3747-3757.	30.8	150
13	Facile controlled synthesis and growth mechanisms of flower-like and tubular MnO2 nanostructures by microwave-assisted hydrothermal method. Journal of Colloid and Interface Science, 2012, 369, 123-128.	9.4	141
14	Discharge product morphology and increased charge performance of lithium–oxygen batteries with graphene nanosheet electrodes: the effect of sulphur doping. Journal of Materials Chemistry, 2012, 22, 20170.	6.7	136
15	Hierarchically porous LiFePO4/nitrogen-doped carbon nanotubes composite as a cathode for lithium ion batteries. Journal of Materials Chemistry, 2012, 22, 7537.	6.7	135
16	Elucidating the activity, mechanism and application of selective electrosynthesis of ammonia from nitrate on cobalt phosphide. Energy and Environmental Science, 2022, 15, 760-770.	30.8	133
17	Superior catalytic activity of nitrogen-doped graphene cathodes for high energy capacity sodium–air batteries. Chemical Communications, 2013, 49, 11731.	4.1	119
18	Improved performance of Pd electrocatalyst supported on ultrahigh surface area hollow carbon spheres for direct alcohol fuel cells. Journal of Power Sources, 2008, 177, 61-66.	7.8	107

#	Article	IF	CITATIONS
19	Ultrathin MoS2 anchored on 3D carbon skeleton containing SnS quantum dots as a high-performance anode for advanced lithium ion batteries. Chemical Engineering Journal, 2021, 403, 126251.	12.7	105
20	Construction of K ⁺ Ion Gradient in Crystalline Carbon Nitride to Accelerate Exciton Dissociation and Charge Separation for Visible Light H ₂ Production. ACS Catalysis, 2021, 11, 6995-7005.	11.2	100
21	Hierarchical hollow carbon spheres: Novel synthesis strategy, pore structure engineering and application for micro-supercapacitor. Carbon, 2020, 157, 70-79.	10.3	97
22	Fe3O4/PVDF-HFP photothermal membrane with in-situ heating for sustainable, stable and efficient pilot-scale solar-driven membrane distillation. Desalination, 2020, 478, 114288.	8.2	95
23	Novel approach toward a binder-free and current collector-free anode configuration: highly flexible nanoporous carbon nanotube electrodes with strong mechanical strength harvesting improved lithium storage. Journal of Materials Chemistry, 2012, 22, 18847.	6.7	91
24	Hierarchical CuO _x –Co ₃ O ₄ heterostructure nanowires decorated on 3D porous nitrogen-doped carbon nanofibers as flexible and free-standing anodes for high-performance lithium-ion batteries. Journal of Materials Chemistry A, 2019, 7, 7691-7700.	10.3	90
25	Hollow Co3S4/C anchored on nitrogen-doped carbon nanofibers as a free-standing anode for high-performance Li-ion batteries. Electrochimica Acta, 2019, 299, 173-181.	5.2	81
26	A self-sacrifice template strategy to fabricate yolk-shell structured silicon@void@carbon composites for high-performance lithium-ion batteries. Chemical Engineering Journal, 2018, 351, 103-109.	12.7	78
27	Atomic layer deposition-enabled ultrastable freestanding carbon-selenium cathodes with high mass loading for sodium-selenium battery. Nano Energy, 2018, 43, 317-325.	16.0	76
28	The origin of the high performance of tungsten carbides/carbon nanotubes supported Pt catalysts for methanol electrooxidation. Electrochemistry Communications, 2009, 11, 290-293.	4.7	73
29	The enhancement of electrochemical capacitance of biomass-carbon by pyrolysis of extracted nanofibers. Electrochimica Acta, 2017, 228, 398-406.	5.2	73
30	Recent Progress in 2D Catalysts for Photocatalytic and Electrocatalytic Artificial Nitrogen Reduction to Ammonia. Advanced Energy Materials, 2021, 11, 2003294.	19.5	73
31	Sodium borohydride hydrolysis on highly efficient Co–B/Pd catalysts. International Journal of Hydrogen Energy, 2008, 33, 4048-4054.	7.1	72
32	Rational design of positive-hexagon-shaped two-dimensional ZIF-derived materials as improved bifunctional oxygen electrocatalysts for use as long-lasting rechargeable Zn–Air batteries. Applied Catalysis B: Environmental, 2019, 256, 117871.	20.2	70
33	CoO-Co 3 O 4 heterostructure nanoribbon/RGO sandwich-like composites as anode materials for high performance lithium-ion batteries. Electrochimica Acta, 2017, 241, 252-260.	5.2	69
34	In-Plane Charge Transport Dominates the Overall Charge Separation and Photocatalytic Activity in Crystalline Carbon Nitride. ACS Catalysis, 2022, 12, 4648-4658.	11.2	69
35	Mesoporous Li1.2Mn0.54Ni0.13Co0.13O2 nanotubes for high-performance cathodes in Li-ion batteries. Journal of Power Sources, 2016, 311, 35-41.	7.8	68
36	Three-dimensional network structure of silicon-graphene-polyaniline composites as high performance anodes for Lithium-ion batteries. Electrochimica Acta, 2016, 190, 1032-1040.	5.2	68

#	Article	IF	CITATIONS
37	One-pot solvothermal synthesis of doped graphene with the designed nitrogen type used as a Pt support for fuel cells. Electrochemistry Communications, 2012, 22, 65-68.	4.7	66
38	Insitu coating of nitrogen-doped graphene-like nanosheets on silicon as a stable anode for high-performance lithium-ion batteries. Journal of Materials Chemistry A, 2014, 2, 11254-11260.	10.3	62
39	Microwave-assisted hydrothermal synthesis of nanostructured spinel Li4Ti5O12 as anode materials for lithium ion batteries. Electrochimica Acta, 2012, 63, 100-104.	5.2	59
40	Amorphous MoS3 decoration on 2D functionalized MXene as a bifunctional electrode for stable and robust lithium storage. Chemical Engineering Journal, 2021, 406, 126775.	12.7	59
41	Carbon black cathodes for lithium oxygen batteries: Influence of porosity and heteroatom-doping. Carbon, 2013, 64, 170-177.	10.3	58
42	Co ₃ O ₄ Hollow Porous Nanospheres with Oxygen Vacancies for Enhanced Li–O ₂ Batteries. ACS Applied Energy Materials, 2020, 3, 4014-4022.	5.1	57
43	Anchoring metal nanoparticles on hydrofluoric acid treated multiwalled carbon nanotubes as stable electrocatalysts. Electrochemistry Communications, 2008, 10, 1101-1104.	4.7	55
44	Regulation and mechanism study of the CoS2/Cu2S-NF heterojunction as highly-efficient bifunctional electrocatalyst for oxygen reactions. Applied Catalysis B: Environmental, 2022, 303, 120849.	20.2	55
45	MoS ₂ nanoflowers encapsulated into carbon nanofibers containing amorphous SnO ₂ as an anode for lithium-ion batteries. Nanoscale, 2019, 11, 16253-16261.	5.6	52
46	Solvothermal synthesis of ternary Cu2O-CuO-RGO composites as anode materials for high performance lithium-ion batteries. Electrochimica Acta, 2016, 222, 1650-1659.	5.2	50
47	Robust SnO _{2â~`<i>x</i>} Nanoparticleâ€Impregnated Carbon Nanofibers with Outstanding Electrochemical Performance for Advanced Sodiumâ€Ion Batteries. Angewandte Chemie, 2018, 130, 9039-9043.	2.0	50
48	Binder-free carbon nano-network wrapped carbon felt with optimized heteroatom doping for vanadium redox flow batteries. Journal of Materials Chemistry A, 2019, 7, 25132-25141.	10.3	50
49	Interaction of Carbon Coating on LiFePO ₄ : A Local Visualization Study of the Influence of Impurity Phases. Advanced Functional Materials, 2013, 23, 806-814.	14.9	47
50	PdNi alloy decorated 3D hierarchicallyÂN, S co-doped macro–mesoporous carbon composites as efficient free-standing and binder-free catalysts for Li–O ₂ batteries. Journal of Materials Chemistry A, 2018, 6, 10856-10867.	10.3	47
51	Electrospun FeS nanorods with enhanced stability as counter electrodes for dye-sensitized solar cells. Electrochimica Acta, 2017, 229, 229-238.	5.2	46
52	Ternary PdNi-based nanocrystals supported on nitrogen-doped reduced graphene oxide as highly active electrocatalysts for the oxygen reduction reaction. Electrochimica Acta, 2017, 235, 543-552.	5.2	45
53	Air plasma etching towards rich active sites in Fe/N-porous carbon for the oxygen reduction reaction with superior catalytic performance. Journal of Materials Chemistry A, 2017, 5, 16605-16610.	10.3	45
54	Non-precious nanostructured materials by electrospinning and their applications for oxygen reduction in polymer electrolyte membrane fuel cells. Journal of Power Sources, 2018, 408, 17-27.	7.8	45

#	Article	IF	CITATIONS
55	Ultra small few layer MoS2 embedded into three-dimensional macro-micro-mesoporous carbon as a high performance lithium ion batteries anode with superior lithium storage capacity. Electrochimica Acta, 2019, 317, 638-647.	5.2	43
56	Fast ion diffusion kinetics based on ferroelectric and piezoelectric effect of SnO2/BaTiO3 heterostructures for high-rate sodium storage. Nano Energy, 2021, 90, 106591.	16.0	42
57	Restricted diffusion preparation of fully-exposed Fe single-atom catalyst on carbon nanospheres for efficient oxygen reduction reaction. Applied Catalysis B: Environmental, 2022, 305, 121058.	20.2	42
58	Fluoroethylene carbonate-Li-ion enabling composite solid-state electrolyte and lithium metal interface self-healing for dendrite-free lithium deposition. Chemical Engineering Journal, 2021, 408, 127254.	12.7	39
59	Self-healing silicon-sodium alginate-polyaniline composites originated from the enhancement hydrogen bonding for lithium-ion battery: A combined simulation and experiment study. Journal of Power Sources, 2019, 412, 749-758.	7.8	38
60	Free-standing ZIF-8 derived nitrogen and sulfur co-doped porous carbon nanofibers host for high mass loading lithium-sulfur battery. Applied Surface Science, 2020, 509, 145270.	6.1	38
61	Oxygen Vacancy Engineering in Tin(IV) Oxide Based Anode Materials toward Advanced Sodiumâ€lon Batteries. ChemSusChem, 2018, 11, 3693-3703.	6.8	37
62	Band Engineering Induced Conducting 2Hâ€Phase MoS ₂ by PdSRe Sites Modification for Hydrogen Evolution Reaction. Advanced Energy Materials, 2022, 12, .	19.5	37
63	Co–Mo–P carbon nanospheres derived from metal–organic frameworks as a high-performance electrocatalyst towards efficient water splitting. Journal of Materials Chemistry A, 2021, 9, 1143-1149.	10.3	36
64	Confining Sb ₂ Se ₃ nanorod yolk in a mesoporous carbon shell with an in-built buffer space for stable Li-ion batteries. Journal of Materials Chemistry A, 2021, 9, 3388-3397.	10.3	35
65	Highly Stable Pdâ€Based Catalytic Nanoarchitectures for Low Temperature Fuel Cells. Fuel Cells, 2008, 8, 429-435.	2.4	34
66	Atomic layer deposition of amorphous oxygen-deficient TiO2-x on carbon nanotubes as cathode materials for lithium-air batteries. Journal of Power Sources, 2017, 360, 215-220.	7.8	34
67	Antimonene quantum dot-based solid-state solar cells with enhanced performance and high stability. Solar Energy Materials and Solar Cells, 2019, 189, 11-20.	6.2	34
68	Two dimensional ZIF-derived ultra-thin Cu–N/C nanosheets as high performance oxygen reduction electrocatalysts for high-performance Zn–air batteries. Nanoscale, 2020, 12, 14259-14266.	5.6	34
69	Long cyclic stability of acidic aqueous zinc-ion batteries achieved by atomic layer deposition: the effect of the induced orientation growth of the Zn anode. Nanoscale, 2021, 13, 12223-12232.	5.6	33
70	ZIF-derived "senbei―like Co ₉ S ₈ /CeO ₂ /Co heterostructural nitrogen-doped carbon nanosheets as bifunctional oxygen electrocatalysts for Zn-air batteries. Nanoscale, 2021, 13, 3227-3236.	5.6	33
71	Flexible Three-Dimensional Heterostructured ZnO-Co ₃ O ₄ on Carbon Cloth as Free-Standing Anode with Outstanding Li/Na Storage Performance. Journal of the Electrochemical Society, 2018, 165, A3932-A3942.	2.9	32
72	Facile synthesis of PdSnCo/nitrogen-doped reduced graphene as a highly active catalyst for lithium-air batteries. Electrochimica Acta, 2017, 228, 36-44.	5.2	31

#	Article	IF	CITATIONS
73	Heterostructured CoO-Co ₃ O ₄ nanoparticles anchored on nitrogen-doped hollow carbon spheres as cathode catalysts for Li–O ₂ batteries. Nanoscale, 2019, 11, 14769-14776.	5.6	31
74	Plasma enhanced atomic-layer-deposited nickel oxide on Co3O4 arrays as highly active electrocatalyst for oxygen evolution reaction. Journal of Power Sources, 2021, 481, 228925.	7.8	31
75	Enhanced cycling stability of Li-rich nanotube cathodes by 3D graphene hierarchical architectures for Li-ion batteries. Acta Materialia, 2016, 112, 11-19.	7.9	30
76	Nitrogen-doped CoOx/carbon nanotubes derived by plasma-enhanced atomic layer deposition: Efficient bifunctional electrocatalyst for oxygen reduction and evolution reactions. Electrochimica Acta, 2019, 296, 964-971.	5.2	30
77	Heterostructure enhanced sodium storage performance for SnS ₂ in hierarchical SnS ₂ /Co ₃ S ₄ nanosheet array composite. Journal of Materials Chemistry A, 2021, 9, 1630-1642.	10.3	30
78	Li1.2Mn0.54Ni0.13Co0.13O2-Encapsulated Carbon Nanofiber Network Cathodes with Improved Stability and Rate Capability for Li-ion Batteries. Scientific Reports, 2015, 5, 11257.	3.3	29
79	In situ nitrogen doping of TiO ₂ by plasma enhanced atomic layer deposition for enhanced sodium storage performance. Dalton Transactions, 2017, 46, 13101-13107.	3.3	29
80	N-Doped porous tremella-like Fe ₃ C/C electrocatalysts derived from metal–organic frameworks for oxygen reduction reaction. Dalton Transactions, 2020, 49, 797-807.	3.3	29
81	A CoO _x /FeO _x heterojunction on carbon nanotubes prepared by plasma-enhanced atomic layer deposition for the highly efficient electrocatalysis of oxygen evolution reactions. Journal of Materials Chemistry A, 2020, 8, 15140-15147.	10.3	27
82	Fluorine-free prepared two-dimensional molybdenum boride (MBene) as a promising anode for lithium-ion batteries with superior electrochemical performance. Chemical Engineering Journal, 2022, 446, 137466.	12.7	27
83	Mesoporous NiCo ₂ O ₄ networks with enhanced performance as counter electrodes for dye-sensitized solar cells. Dalton Transactions, 2017, 46, 4403-4411.	3.3	26
84	Nb5+ doped LiV3O8 nanorods with extraordinary rate performance and cycling stability as cathodes for lithium-ion batteries. Electrochimica Acta, 2018, 284, 366-375.	5.2	26
85	Enhanced structural stability and overall conductivity of Li-rich layered oxide materials achieved by a dual electron/lithium-conducting coating strategy for high-performance lithium-ion batteries. Journal of Materials Chemistry A, 2019, 7, 23964-23972.	10.3	25
86	Single-component slurry based lithium-ion flow battery with 3D current collectors. Journal of Power Sources, 2021, 485, 229319.	7.8	24
87	Oneâ€5tep Synthesis of 3Dâ€5andwiched Na ₃ V ₂ (PO ₄) ₂ O ₂ F@rGO Composites as Cathode Material for Highâ€Rate Sodiumâ€lon Batteries. ChemElectroChem, 2018, 5, 2593-2599.	3.4	23
88	Carbon nanotubes coupled with layered graphite to support SnTe nanodots as high-rate and ultra-stable lithium-ion battery anodes. Nanoscale, 2021, 13, 3782-3789.	5.6	23
89	Rapid ionic conductivity of ternary composite electrolytes for superior solid-state batteries with high-rate performance and long cycle life operated at room temperature. Journal of Materials Chemistry A, 2021, 9, 18338-18348.	10.3	23
90	A Tremella-Like Nanostructure of Silicon@void@graphene-Like Nanosheets Composite as an Anode for Lithium-Ion Batteries. Nanoscale Research Letters, 2016, 11, 204.	5.7	22

#	Article	IF	CITATIONS
91	Bifunctional oxygen electrocatalysis on ultra-thin Co ₉ S ₈ /MnS carbon nanosheets for all-solid-state zinc–air batteries. Journal of Materials Chemistry A, 2021, 9, 22635-22642.	10.3	22
92	Breaking the Limitation of Elevated Coulomb Interaction in Crystalline Carbon Nitride for Visible and Nearâ€Infrared Light Photoactivity. Advanced Science, 2022, 9, .	11.2	22
93	A lithium carboxylate grafted dendrite-free polymer electrolyte for an all-solid-state lithium-ion battery. Journal of Materials Chemistry A, 2019, 7, 25818-25823.	10.3	21
94	Si/Ni3Si-Encapulated Carbon Nanofiber Composites as Three-Dimensional Network Structured Anodes for Lithium-ion Batteries. Electrochimica Acta, 2016, 192, 385-391.	5.2	20
95	One-step rapid in-situ synthesis of nitrogen and sulfur co-doped three-dimensional honeycomb-ordered carbon supported PdNi nanoparticles as efficient electrocatalyst for oxygen reduction reaction in alkaline solution. Electrochimica Acta, 2017, 253, 445-454.	5.2	20
96	Boosting Na-ion diffusion by piezoelectric effect induced by alloying reaction of micro red-phosphorus/BaTiO3/graphene composite anode. Nano Energy, 2019, 66, 104136.	16.0	20
97	Co/CoP Nanoparticles Encapsulated Within N, P-Doped Carbon Nanotubes on Nanoporous Metal-Organic Framework Nanosheets for Oxygen Reduction and Oxygen Evolution Reactions. Nanoscale Research Letters, 2020, 15, 82.	5.7	20
98	Atomic layer deposition of TiO2 on nitrogen-doped carbon nanofibers supported Ru nanoparticles for flexible Li-O2 battery: A combined DFT and experimental study. Journal of Power Sources, 2017, 368, 88-96.	7.8	19
99	Dynamic conducting effect of WO3/PFSA membranes on the performance of proton exchange membrane fuel cells. Journal of Power Sources, 2008, 177, 56-60.	7.8	18
100	Microwave-assisted synthesis of sulfur-doped graphene supported PdW nanoparticles as a high performance electrocatalyst for the oxygen reduction reaction. Electrochemistry Communications, 2016, 69, 68-71.	4.7	18
101	Hydrothermal Synthesis of NiS2 Cubes with High Performance as Counter Electrodes in Dye-Sensitized Solar Cells. International Journal of Electrochemical Science, 2017, 12, 4610-4618.	1.3	18
102	A blended gel polymer electrolyte for dendrite-free lithium metal batteries. Applied Surface Science, 2021, 569, 150899.	6.1	18
103	MoS ₂ nanosheets vertically grown on CoSe ₂ hollow nanotube arrays as an efficient catalyst for the hydrogen evolution reaction. Nanoscale, 2022, 14, 2490-2501.	5.6	18
104	In situ growth of morphology-controllable nickel sulfides as efficient counter electrodes for dye-sensitized solar cells. Journal of Solid State Electrochemistry, 2016, 20, 2373-2382.	2.5	17
105	Nitrogen and Sulfur Dual-Doped Carbon Microtubes with Enhanced Performances for Oxygen Reduction Reaction. Journal of the Electrochemical Society, 2016, 163, H343-H349.	2.9	17
106	Tuning and understanding the electronic effect of Co–Mo–O sites in bifunctional electrocatalysts for ultralong-lasting rechargeable zinc–air batteries. Journal of Materials Chemistry A, 2021, 9, 21716-21722.	10.3	16
107	Electrospun NiCo2S4 with extraordinary electrocatalytic activity as counter electrodes for dye-sensitized solar cells. Journal of Solid State Electrochemistry, 2017, 21, 3579-3588.	2.5	15
108	Nitrogen and sulfur co-doped graphene supported PdW alloys as highly active electrocatalysts for oxygen reduction reaction. International Journal of Hydrogen Energy, 2018, 43, 5530-5540.	7.1	15

#	Article	IF	CITATIONS
109	Double-Enhanced Core–Shell–Shell Sb ₂ S ₃ /Sb@TiO ₂ @C Nanorod Composites for Lithium- and Sodium-Ion Batteries. ACS Applied Materials & Interfaces, 2022, 14, 33064-33075.	8.0	15
110	3D Networks of Carbonâ€Coated Magnesiumâ€Doped Olivine Nanofiber as Binderâ€Free Cathodes for Highâ€Performance Liâ€lon Battery. Advanced Materials Interfaces, 2016, 3, 1600241.	3.7	14
111	Enhanced electrocatalytic performance of Fe-TiO2/N-doped graphene cathodes for rechargeable Li-O2 batteries. Journal of Solid State Electrochemistry, 2018, 22, 909-917.	2.5	14
112	Controlled synthesis and lithium storage performance of NiCo2O4/PPy composite materials. Journal of Physics and Chemistry of Solids, 2021, 148, 109761.	4.0	14
113	Ultrathin interfacial modification of Li-rich layered oxide electrode/sulfide solid electrolyte via atomic layer deposition for high electrochemical performance batteries. Nanotechnology, 2020, 31, 454001.	2.6	14
114	Batteries: Tin Oxide with Controlled Morphology and Crystallinity by Atomic Layer Deposition onto Graphene Nanosheets for Enhanced Lithium Storage (Adv. Funct. Mater. 8/2012). Advanced Functional Materials, 2012, 22, 1646-1646.	14.9	13
115	Unveiling the reaction mechanism of an Sb ₂ S ₃ –Co ₉ S ₈ /NC anode for high-performance lithium-ion batteries. Nanoscale, 2021, 13, 20041-20051.	5.6	13
116	Synthesis of Si-Sb-ZnO Composites as High-Performance Anodes for Lithium-ion Batteries. Nanoscale Research Letters, 2015, 10, 414.	5.7	12
117	Carbon-coated LiFePO4synthesized by a simple solvothermal method. CrystEngComm, 2016, 18, 7537-7543.	2.6	12
118	A carob-inspired nanoscale design of yolk–shell Si@void@TiO ₂ -CNF composite as anode material for high-performance lithium-ion batteries. Dalton Transactions, 2019, 48, 6846-6852.	3.3	12
119	Rational design of Ru species on N-doped graphene promoting water dissociation for boosting hydrogen evolution reaction. Science China Chemistry, 2022, 65, 521-531.	8.2	12
120	SnSb–ZnO composite materials as high performance anodes for lithium-ion batteries. RSC Advances, 2015, 5, 105643-105650.	3.6	11
121	In situ coating of graphene-like sheets on Li4Ti5O12 particles for lithium-ion batteries. Electrochimica Acta, 2017, 230, 508-513.	5.2	11
122	Free-Standing Selenium Impregnated Carbonized Leaf Cathodes for High-Performance Sodium-Selenium Batteries. Nanoscale Research Letters, 2019, 14, 30.	5.7	11
123	Highly stable N-containing polymer-based Fe/Nx/C electrocatalyst for alkaline anion exchange membrane fuel cell applications. Progress in Natural Science: Materials International, 2022, 32, 27-33.	4.4	11
124	A cerium-doped NASICON chemically coupled poly(vinylidene fluoride-hexafluoropropylene)-based polymer electrolyte for high-rate and high-voltage quasi-solid-state lithium metal batteries. Journal of Energy Chemistry, 2022, 73, 311-321.	12.9	11
125	Novel Heteroatom-Doped Fe/N/C Electrocatalysts With Superior Activities for Oxygen Reduction Reaction in Both Acid and Alkaline Solutions. Frontiers in Chemistry, 2020, 8, 78.	3.6	10
126	Preparation and Bolometric Responses of MoS2 Nanoflowers and Multi-Walled Carbon Nanotube Composite Network. Nanomaterials, 2022, 12, 495.	4.1	10

#	Article	IF	CITATIONS
127	Defective Fe ₃ O _{4â€} <i>_x</i> Fewâ€Atom Clusters Anchored on Nitrogenâ€Doped Carbon as Efficient Oxygen Reduction Electrocatalysts for Highâ€Performance Zinc–Air Batteries. Small Methods, 2022, 6, .	8.6	10
128	3D-ordered porous nitrogen and sulfur Co-Doped carbon supported PdCuW nanoparticles as efficient catalytic cathode materials for Li-O 2 batteries. Electrochimica Acta, 2018, 272, 33-43.	5.2	9
129	Donor–Acceptor Cyanocarbazoleâ€Based Supramolecular Photocatalysts for Visibleâ€Lightâ€Driven H ₂ Production. ChemSusChem, 2019, 12, 5070-5074.	6.8	9
130	Co-CoO/MnO Heterostructured Nanocrystals Anchored on N/P-Doped 3D Porous Graphene for High-Performance Pseudocapacitive Lithium Storage. Journal of the Electrochemical Society, 2019, 166, A3820-A3829.	2.9	9
131	Extraordinary dual-ion electrochemical deionization capacity and energy efficiency enabled by coupling of Na ₃ Fe ₂ (PO ₄) ₃ and NiVAl layered double hydroxide electrodes. Journal of Materials Chemistry A, 2021, 9, 22913-22925.	10.3	9
132	Engineering hollow multi-shelled Co3O4 cubes to boost lithium storage performance. Applied Surface Science, 2021, 545, 149022.	6.1	9
133	Efficient capture and conversion of polysulfides by zinc protoporphyrin framework-embedded triple-layer nanofiber separator for advanced Li-S batteries. Journal of Colloid and Interface Science, 2022, 609, 43-53.	9.4	9
134	Zeolitic-imidazolate frameworks-derived Co3S4/NiS@Ni foam heterostructure as highly efficient electrocatalyst for oxygen evolution reaction. International Journal of Hydrogen Energy, 2022, 47, 13616-13628.	7.1	9
135	Preparation and electrochemical properties of Si0.8Sb/C nanofiber composite anode materials for lithium-ion batteries. Journal of Solid State Electrochemistry, 2017, 21, 2281-2289.	2.5	7
136	LiFePO ₄ /RGO composites synthesized by a solid phase combined with carbothermal reduction method. Ferroelectrics, 2018, 528, 1-7.	0.6	7
137	Improving the structure stabilization of red phosphorus anodes <i>via</i> the shape memory effect of a Ni–Ti alloy for high-performance sodium ion batteries. Chemical Communications, 2019, 55, 4659-4662.	4.1	7
138	One-pot synthesis of N,S-doped pearl chain tube-loaded Ni3S2 composite materials for high-performance lithium–air batteries. Nanoscale, 2020, 12, 21770-21779.	5.6	7
139	Recent Progress on Preparation of Transition Metal Compound as Counter Electrodes for Dye-sensitized Solar Cells. Wuji Cailiao Xuebao/Journal of Inorganic Materials, 2016, 31, 113.	1.3	7
140	Facile synthesis of N-doped carbon-coated Si/Cu alloy with enhanced cyclic performance for lithium ion batteries. RSC Advances, 2016, 6, 78100-78105.	3.6	6
141	A Li-rich Li[Li0.2Ni0.2Mn0.6]O2 Cathode Material in situ Coated with Polyaniline. International Journal of Electrochemical Science, 2017, 12, 4756-4767.	1.3	6
142	Pyrimidine donor induced built-in electric field between melon chains in crystalline carbon nitride to facilitate excitons dissociation. Chinese Chemical Letters, 2023, 34, 107383.	9.0	6
143	Accelerating ion transport via in-situ formation of built-in electric field for fast charging sodium-ion batteries. Chemical Engineering Journal, 2022, 450, 138019.	12.7	6
144	Three-dimensional nanoarchitecture SnSbZn–C composite nanofibers as anode materials for lithium-ion batteries. RSC Advances, 2016, 6, 52746-52753.	3.6	5

#	Article	IF	CITATIONS
145	Synthesis of Ultrathin MoS ₂ Nanosheets Embedded in 3D Hierarchically Nitrogenâ€andâ€Sulfur Coâ€Doped Porous Carbon Composites as Efficient Oxygen Reduction Reaction Catalyst. ChemElectroChem, 2020, 7, 3260-3268.	3.4	4
146	Hybrid CuO-Co3O4 nanosphere/RGO sandwiched composites as anode materials for lithium-ion batteries. Chinese Journal of Chemical Engineering, 2022, 47, 185-192.	3.5	4
147	Hydrogen Production by Alcohol Electrolysis. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 2007, 23, 107-110.	4.9	4
148	2D Electrocatalysts: Recent Progress in 2D Catalysts for Photocatalytic and Electrocatalytic Artificial Nitrogen Reduction to Ammonia (Adv. Energy Mater. 11/2021). Advanced Energy Materials, 2021, 11, 2170043.	19.5	3
149	Multiple anionic Ni(SO4)0.3(OH)1.4 nanobelts/reduced graphene oxide enabled by enhanced multielectron reactions with superior lithium storage capacity. Chemical Engineering Journal, 2021, 426, 131863.	12.7	3
150	Recent Research Progress on Lead-free or Less-lead Perovskite Solar Cells. International Journal of Electrochemical Science, 2017, , 4915-4927.	1.3	2
151	Application of Oxygen Reduction Catalysts. , 2021, , 215-254.		1
152	Electrospinning preparation and performance of lithium-rich manganese-based lithium ion battery cathode material. Shenzhen Daxue Xuebao (Ligong Ban)/Journal of Shenzhen University Science and Engineering, 2017, 34, 132.	0.2	1
153	Graphene and N-Doped Graphene as Cathodes for Li-Air Batteries. ECS Meeting Abstracts, 2012, , .	0.0	0
154	Advanced Materials for Na–Air Batteries. Electrochemical Energy Storage and Conversion, 2015, , 211-216.	0.0	0
155	SnSbCux Alloy Composite Anode Materials for High Performance Lithium-Ion Batteries. International Journal of Electrochemical Science, 2016, , 9508-9518.	1.3	0
156	Titelbild: Robust SnO2â^'x Nanoparticle-Impregnated Carbon Nanofibers with Outstanding Electrochemical Performance for Advanced Sodium-Ion Batteries (Angew. Chem. 29/2018). Angewandte Chemie, 2018, 130, 8919-8919.	2.0	0
157	Methanol Oxidation on Pd-based Electrocatalysts. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 2007, 23, 993-996.	4.9	0