Anke Lindner

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4793038/publications.pdf Version: 2024-02-01

ANKELINDNED

#	Article	IF	CITATIONS
1	Run-to-Tumble Variability Controls the Surface Residence Times of <i>E. coli</i> Bacteria. Physical Review Letters, 2022, 128, .	2.9	12
2	Morphological transitions of flexible fibers in viscous flows. , 2022, 3, 100057.		1
3	Signatures of elastoviscous buckling in the dilute rheology of stiff polymers. Journal of Fluid Mechanics, 2021, 919, .	1.4	5
4	Clogging of microfluidic constrictions by monoclonal antibody aggregates: role of aggregate shape and deformability. Soft Matter, 2020, 16, 921-928.	1.2	17
5	Oscillations of a cantilevered micro beam driven by a viscoelastic flow instability. Soft Matter, 2020, 16, 1227-1235.	1.2	11
6	Chirality-induced bacterial rheotaxis in bulk shear flows. Science Advances, 2020, 6, eabb2012.	4.7	31
7	Optimised hyperbolic microchannels for the mechanical characterisation of bio-particles. Soft Matter, 2020, 16, 9844-9856.	1.2	14
8	3D Spatial Exploration by <i>E. coli</i> Echoes Motor Temporal Variability. Physical Review X, 2020, 10, .	2.8	14
9	Microfluidic In-Situ Measurement of Poisson's Ratio of Hydrogels. Micromachines, 2020, 11, 318.	1.4	29
10	<i>E. coli</i> "super-contaminates―narrow ducts fostered by broad run-time distribution. Science Advances, 2020, 6, eaay0155.	4.7	29
11	Flexible filaments buckle into helicoidal shapes in strong compressional flows. Nature Physics, 2020, 16, 689-694.	6.5	41
12	Programmed Wrapping and Assembly of Droplets with Mesoscale Polymers. Advanced Functional Materials, 2020, 30, 2002704.	7.8	7
13	Oscillatory surface rheotaxis of swimming E. coli bacteria. Nature Communications, 2019, 10, 3434.	5.8	73
14	Swimming bacteria in Poiseuille flow: The quest for active Bretherton-Jeffery trajectories. Europhysics Letters, 2019, 126, 44003.	0.7	29
15	Secondary flows of viscoelastic fluids in serpentine microchannels. Microfluidics and Nanofluidics, 2019, 23, 1.	1.0	29
16	Dynamics of Flexible Fibers in Viscous Flows and Fluids. Annual Review of Fluid Mechanics, 2019, 51, 539-572.	10.8	130
17	Transport of flexible fibers in confined microchannels. Physical Review Fluids, 2019, 4, .	1.0	15
18	Morphological transitions of elastic filaments in shear flow. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 9438-9443.	3.3	63

Anke Lindner

#	Article	IF	CITATIONS
19	Deformation of a flexible fiber settling in a quiescent viscous fluid. Physical Review Fluids, 2018, 3, .	1.0	29
20	Molecular Weight Dependence of Interdiffusion and Adhesion of Polymers at Short Contact Times. Langmuir, 2017, 33, 1670-1678.	1.6	18
21	Customised bifurcating networks for mapping polymer dynamics in shear flows. Biomicrofluidics, 2017, 11, 064106.	1.2	6
22	Microfluidic Fabrication Solutions for Tailor-Designed Fiber Suspensions. Applied Sciences (Switzerland), 2016, 6, 385.	1.3	9
23	The stabilizing effect of shear thinning on the onset of purely elastic instabilities in serpentine microflows. Soft Matter, 2016, 12, 6167-6175.	1.2	46
24	Bacterial suspensions under flow. European Physical Journal: Special Topics, 2016, 225, 2389-2406.	1.2	26
25	Deformation and shape of flexible, microscale helices in viscous flow. Physical Review E, 2015, 92, 011004.	0.8	17
26	Microfluidic in situ mechanical testing of photopolymerized gels. Lab on A Chip, 2015, 15, 244-252.	3.1	25
27	Single particles accelerate final stages of capillary break-up. Europhysics Letters, 2015, 110, 64002.	0.7	16
28	Living on the edge: transfer and traffic of E. coli in a confined flow. Soft Matter, 2015, 11, 6284-6293.	1.2	59
29	Elastic Fibers in Flows. RSC Soft Matter, 2015, , 168-192.	0.2	14
30	Flow of complex suspensions. Physics of Fluids, 2014, 26, .	1.6	16
31	Quantitative analysis of the debonding structure of soft adhesives. European Physical Journal E, 2014, 37, 3.	0.7	23
32	Serpentine channels: micro-rheometers for fluid relaxation times. Lab on A Chip, 2014, 14, 351-358.	3.1	67
33	Debonding Mechanisms of Soft Materials at Short Contact Times. Langmuir, 2014, 30, 10626-10636.	1.6	15
34	Bending of elastic fibres in viscous flows: the influence of confinement. Journal of Fluid Mechanics, 2013, 720, 517-544.	1.4	52
35	Particles accelerate the detachment of viscous liquids. Rheologica Acta, 2013, 52, 403-412.	1.1	35
36	Debonding energy of PDMS. European Physical Journal E, 2013, 36, 103.	0.7	23

Anke Lindner

#	Article	IF	CITATIONS
37	Crack propagation at the interface between soft adhesives and model surfaces studied with a sticky wedge test. Soft Matter, 2013, 9, 6515.	1.2	16
38	Non-Newtonian Viscosity of <i>Escherichia coli</i> Suspensions. Physical Review Letters, 2013, 110, 268103.	2.9	145
39	Preload-responsive adhesion: effects of aspect ratio, tip shape and alignment. Journal of the Royal Society Interface, 2013, 10, 20130171.	1.5	38
40	Single fiber transport in a confined channel: Microfluidic experiments and numerical study. Physics of Fluids, 2013, 25, .	1.6	23
41	Accelerated drop detachment in granular suspensions. Physics of Fluids, 2012, 24, .	1.6	66
42	Enhanced Adhesion of Elastic Materials to Small-Scale Wrinkles. Langmuir, 2012, 28, 14899-14908.	1.6	78
43	Dynamics of drop formation in granular suspensions: the role of volume fraction. Granular Matter, 2012, 14, 169-174.	1.1	37
44	Dynamic evolution of fingering patterns in a lifted Hele–Shaw cell. Physics of Fluids, 2011, 23, .	1.6	72
45	Mesoscopic Length Scale Controls the Rheology of Dense Suspensions. Physical Review Letters, 2010, 105, 108302.	2.9	28
46	Measurement of the receding contact angle at the interface between a viscoelastic material and a rigid surface. Soft Matter, 2010, 6, 2685.	1.2	29
47	Pattern Formation during Deformation of a Confined Viscoelastic Layer: From a Viscous Liquid to a Soft Elastic Solid. Physical Review Letters, 2008, 101, 074503.	2.9	134
48	Inertial effects on Saffman–Taylor viscous fingering. Journal of Fluid Mechanics, 2006, 552, 83.	1.4	78
49	Saffman–Taylor instability in yield stress fluids. Journal of Physics Condensed Matter, 2005, 17, S1219-S1228.	0.7	35
50	How to obtain the elongational viscosity of dilute polymer solutions?. Physica A: Statistical Mechanics and Its Applications, 2003, 319, 125-133.	1.2	49
51	Cohesive failure of thin layers of soft model adhesives under tension. Journal of Applied Physics, 2003, 93, 1557-1566.	1.1	122
52	Viscous fingering in non-Newtonian fluids. Journal of Fluid Mechanics, 2002, 469, 237-256.	1.4	144
53	Viscous fingering in complex fluids. Journal of Physics Condensed Matter, 2000, 12, A477-A482.	0.7	15
54	Viscous Fingering in a Yield Stress Fluid. Physical Review Letters, 2000, 85, 314-317.	2.9	151

#	Article	IF	CITATIONS
55	Controlling Viscous Fingering. Europhysics News, 1999, 30, 77.	0.1	1