
Antonio Rothfuchs

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/479303/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Detection and isolation of airborne SARS oVâ€2 in a hospital setting. Indoor Air, 2022, 32, e13023.	4.3	11
2	Intestinal helminth infection transforms the CD4+ T cell composition of the skin. Mucosal Immunology, 2022, 15, 257-267.	6.0	5
3	Cyclooxygenase-Derived Prostaglandin E2 Drives IL-1–Independent <i>Mycobacterium bovis</i> Bacille Calmette-Guérin–Triggered Skin Dendritic Cell Migration to Draining Lymph Node. Journal of Immunology, 2022, 208, 2549-2557.	0.8	4
4	Vaccinia Virus Infection Inhibits Skin Dendritic Cell Migration to the Draining Lymph Node. Journal of Immunology, 2021, 206, 776-784.	0.8	15
5	A fieldable electrostatic air sampler enabling tuberculosis detection in bioaerosols. Tuberculosis, 2020, 120, 101896.	1.9	16
6	Massive and rapid COVID-19 testing is feasible by extraction-free SARS-CoV-2 RT-PCR. Nature Communications, 2020, 11, 4812.	12.8	357
7	Operative and Technical Modifications to the Coriolis® µ Air Sampler That Improve Sample Recovery and Biosafety During Microbiological Air Sampling. Annals of Work Exposures and Health, 2020, 64, 852-865.	1.4	5
8	Atrophy of skin-draining lymph nodes predisposes for impaired immune responses to secondary infection in mice with chronic intestinal nematode infection. PLoS Pathogens, 2018, 14, e1007008.	4.7	13
9	Immunogenicity is preferentially induced in sparse dendritic cell cultures. Scientific Reports, 2017, 7, 43989.	3.3	6
10	A CFSE-based Assay to Study the Migration of Murine Skin Dendritic Cells into Draining Lymph Nodes During Infection with Mycobacterium bovis Bacille Calmette-Guérin. Journal of Visualized Experiments, 2016, , .	0.3	9
11	Chronic Gastrointestinal Nematode Infection Mutes Immune Responses to Mycobacterial Infection Distal to the Gut. Journal of Immunology, 2016, 196, 2262-2271.	0.8	22
12	BCG Skin Infection Triggers IL-1R-MyD88-Dependent Migration of EpCAMlow CD11bhigh Skin Dendritic cells to Draining Lymph Node During CD4+ T-Cell Priming. PLoS Pathogens, 2015, 11, e1005206.	4.7	31
13	Nucleotide-binding oligomerization domain-2 (NOD2) regulates type-1 cytokine responses to Mycobacterium avium but is not required for host control of infection. Microbes and Infection, 2015, 17, 337-344.	1.9	7
14	IL-10 Limits Parasite Burden and Protects against Fatal Myocarditis in a Mouse Model ofTrypanosoma cruziInfection. Journal of Immunology, 2012, 188, 649-660.	0.8	83
15	Mannose-Binding Lectin Regulates Host Resistance and Pathology during Experimental Infection with Trypanosoma cruzi. PLoS ONE, 2012, 7, e47835.	2.5	16
16	Intravital Imaging Reveals Limited Antigen Presentation and T Cell Effector Function in Mycobacterial Granulomas. Immunity, 2011, 34, 807-819.	14.3	226
17	The Syk/CARD9-coupled receptor Dectin-1 is not required for host resistance to Mycobacterium tuberculosis in mice. Microbes and Infection, 2011, 13, 198-201.	1.9	61
18	Cysteamine, the natural metabolite of pantetheinase, shows specific activity against Plasmodium. Experimental Parasitology, 2010, 125, 315-324.	1.2	29

#	ARTICLE	IF	CITATIONS
19	Intranasal Poly-IC treatment exacerbates tuberculosis in mice through the pulmonary recruitment of a pathogen-permissive monocyte/macrophage population. Journal of Clinical Investigation, 2010, 120, 1674-1682.	8.2	259
20	In Situ IL-12/23p40 Production during Mycobacterial Infection Is Sustained by CD11bhigh Dendritic Cells Localized in Tissue Sites Distinct from Those Harboring Bacilli. Journal of Immunology, 2009, 182, 6915-6925.	0.8	34
21	Macrophage and T Cell Dynamics during the Development and Disintegration of Mycobacterial Granulomas. Immunity, 2008, 28, 271-284.	14.3	324
22	Neutrophil degranulation mediates severe lung damage triggered by streptococcal M1 protein. European Respiratory Journal, 2008, 32, 405-412.	6.7	97
23	Neutrophil secretion products pave the way for inflammatory monocytes. Blood, 2008, 112, 1461-1471.	1.4	343
24	Dectin-1 Interaction with <i>Mycobacterium tuberculosis</i> Leads to Enhanced IL-12p40 Production by Splenic Dendritic Cells. Journal of Immunology, 2007, 179, 3463-3471.	0.8	177
25	STAT1 Regulates IFN-αβ- and IFN-γ-Dependent Control of Infection with <i>Chlamydia pneumoniae</i> by Nonhemopoietic Cells. Journal of Immunology, 2006, 176, 6982-6990.	0.8	41
26	NK Cell-Derived IFN-γ Differentially Regulates Innate Resistance and Neutrophil Response in T Cell-Deficient Hosts Infected with <i>Mycobacterium tuberculosis</i> . Journal of Immunology, 2006, 177, 7086-7093.	0.8	197
27	Intracellular Bacterial Infection-Induced IFN-γ Is Critically but Not Solely Dependent on Toll-Like Receptor 4-Myeloid Differentiation Factor 88-IFN-αβ-STAT1 Signaling. Journal of Immunology, 2004, 172, 6345-6353.	0.8	60
28	Macrophages, CD4+ or CD8+ Cells Are Each Sufficient for Protection against <i>Chlamydia pneumoniae</i> Infection through their Ability to Secrete IFN-γ. Journal of Immunology, 2004, 172, 2407-2415.	0.8	62
29	CD44-Regulated Intracellular Proliferation of Listeria monocytogenes. Infection and Immunity, 2003, 71, 4102-4111.	2.2	11
30	The role of IFN-Î ³ in the outcome of chlamydial infection. Current Opinion in Immunology, 2002, 14, 444-451.	5.5	177
31	IFN-αβ-Dependent, IFN-γ Secretion by Bone Marrow-Derived Macrophages Controls an Intracellular Bacterial Infection. Journal of Immunology, 2001, 167, 6453-6461.	0.8	109
32	Helicobacter hepaticus-Induced Colitis in Interleukin-10-Deficient Mice: Cytokine Requirements for the Induction and Maintenance of Intestinal Inflammation. Infection and Immunity, 2001, 69, 4232-4241.	2.2	129
33	Regulation and Role of IFN-γ in the Innate Resistance to Infection with <i>Chlamydia</i> â€^ <i>pneumoniae</i> . Journal of Immunology, 2000, 164, 4812-4818.	0.8	123