Carole LaBonne

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/479299/publications.pdf

Version: 2024-02-01

28 papers 1,855 citations

331670 21 h-index 501196 28 g-index

42 all docs 42 docs citations

42 times ranked 2117 citing authors

#	Article	IF	Citations
1	Molecular Mechanisms of Neural Crest Formation. Annual Review of Cell and Developmental Biology, 1999, 15, 81-112.	9.4	209
2	The Protooncogene c-Myc Is an Essential Regulator of Neural Crest Formation in Xenopus. Developmental Cell, 2003, 4, 827-839.	7.0	172
3	SoxE Factors Function Equivalently during Neural Crest and Inner Ear Development and Their Activity Is Regulated by SUMOylation. Developmental Cell, 2005, 9, 593-603.	7.0	155
4	Shared regulatory programs suggest retention of blastula-stage potential in neural crest cells. Science, 2015, 348, 1332-1335.	12.6	137
5	Setting appropriate boundaries: Fate, patterning and competence at the neural plate border. Developmental Biology, 2014, 389, 2-12.	2.0	135
6	Noelin-1 is a secreted glycoprotein involved in generation of the neural crest. Nature Cell Biology, 2000, 2, 219-225.	10.3	119
7	Induction of the neural crest state: Control of stem cell attributes by gene regulatory, post-transcriptional and epigenetic interactions. Developmental Biology, 2012, 366, 10-21.	2.0	106
8	Xenopus Id3 is required downstream of Myc for the formation of multipotent neural crest progenitor cells. Development (Cambridge), 2005, 132, 1831-1841.	2.5	89
9	SoxE factors as multifunctional neural crest regulatory factors. International Journal of Biochemistry and Cell Biology, 2010, 42, 441-444.	2.8	82
10	Induction and patterning of the neural crest, a stem cell-like precursor population., 1998, 36, 175-189.		74
11	Slug stability is dynamically regulated during neural crest development by the F-box protein Ppa. Development (Cambridge), 2006, 133, 3359-3370.	2.5	72
12	Interactions between Twist and other core epithelial–mesenchymal transition factors are controlled by GSK3-mediated phosphorylation. Nature Communications, 2013, 4, 1542.	12.8	66
13	Neural induction in Xenopus requires inhibition of Wnt- \hat{l}^2 -catenin signaling. Developmental Biology, 2006, 298, 71-86.	2.0	61
14	Targeted Inactivation of Snail Family EMT Regulatory Factors by a Co(III)-Ebox Conjugate. PLoS ONE, 2012, 7, e32318.	2.5	52
15	SUMOylated SoxE factors recruit Grg4 and function as transcriptional repressors in the neural crest. Journal of Cell Biology, 2012, 198, 799-813.	5.2	41
16	Sorting Sox: Diverse Roles for Sox Transcription Factors During Neural Crest and Craniofacial Development. Frontiers in Physiology, 2020, 11, 606889.	2.8	35
17	A slug, a fox, a pair of sox: Transcriptional responses to neural crest inducing signals. Birth Defects Research Part C: Embryo Today Reviews, 2004, 72, 124-139.	3.6	33
18	FGF mediated MAPK and PI3K/Akt Signals make distinct contributions to pluripotency and the establishment of Neural Crest. ELife, 2018, 7, .	6.0	33

#	Article	IF	CITATIONS
19	The LIM adaptor protein LMO4 is an essential regulator of neural crest development. Developmental Biology, 2012, 361, 313-325.	2.0	32
20	Sox5 Is a DNA-Binding Cofactor for BMP R-Smads that Directs Target Specificity during Patterning of the Early Ectoderm. Developmental Cell, 2014, 31, 374-382.	7.0	32
21	Modulating the activity of neural crest regulatory factors. Current Opinion in Genetics and Development, 2007, 17, 326-331.	3.3	30
22	Histone Deacetylase activity plays an essential role in establishing and maintaining the vertebrate neural crest. Development (Cambridge), 2018, 145, .	2.5	24
23	Metal ion fluxes controlling amphibian fertilization. Nature Chemistry, 2021, 13, 683-691.	13.6	18
24	Vertebrate Development: Wnt Signals at the Crest. Current Biology, 2002, 12, R743-R744.	3.9	14
25	A transition from SoxB1 to SoxE transcription factors is essential for progression from pluripotent blastula cells to neural crest cells. Developmental Biology, 2018, 444, 50-61.	2.0	12
26	The developmental and evolutionary origins of cellular pluripotency in the vertebrate neural crest. Seminars in Cell and Developmental Biology, 2023, 138, 36-44.	5.0	9
27	Modeling human development and disease in Xenopus. Developmental Biology, 2015, 408, 179.	2.0	6
28	Multiple roles for Wnt signaling in the development of the vertebrate neural crest. Advances in Developmental Biology (Amsterdam, Netherlands), 2007, 17, 203-221.	0.4	2