Takayuki K Nemoto

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4792884/publications.pdf

Version: 2024-02-01

59

all docs

		361413	395702
58	1,247	20	33
papers	citations	h-index	g-index

59

docs citations

59

times ranked

1316

citing authors

#	Article	IF	CITATIONS
1	Expanded substrate specificity supported by P1′ and P2′ residues enables bacterial dipeptidyl-peptidase 7 to degrade bioactive peptides. Journal of Biological Chemistry, 2022, 298, 101585.	3.4	6
2	Dipeptidylâ€peptidases: Key enzymes producing entry forms of extracellular proteins in asaccharolytic periodontopathic bacterium ⟨i⟩Porphyromonas gingivalis⟨/i⟩. Molecular Oral Microbiology, 2021, 36, 145-156.	2.7	16
3	Preferential dipeptide incorporation of Porphyromonas gingivalis mediated by proton-dependent oligopeptide transporter (Pot). FEMS Microbiology Letters, 2021, 367, .	1.8	5
4	Characterization of substrate specificity and novel autoprocessing mechanism of dipeptidase A from <i>Prevotella intermedia</i> . Biological Chemistry, 2020, 401, 629-642.	2.5	4
5	Suppressive effects of Nâ€bisphosphonate in osteoblastic cells mitigated by nonâ€Nâ€bisphosphonate but not by sodiumâ€dependent phosphate cotransporter inhibitor. Cell Biochemistry and Function, 2019, 37, 400-407.	2.9	3
6	Characterization of bacterial acylpeptidyl-oligopeptidase. Biochimie, 2019, 163, 50-57.	2.6	1
7	Establishment of potent and specific synthetic substrate for dipeptidyl-peptidase 7. Analytical Biochemistry, 2018, 548, 78-81.	2.4	7
8	Distribution of dipeptidyl peptidase (DPP) 4, DPP5, DPP7, and DPP11 in human oral microbiota $\hat{a} \in \text{``potent}$ biomarkers indicating presence of periodontopathic bacteria. FEMS Microbiology Letters, 2018, 365, .	1.8	10
9	Identification of a new subtype of dipeptidyl peptidase 11 and a third group of the S46-family members specifically present in the genus Bacteroides. Biochimie, 2018, 147, 25-35.	2.6	5
10	Degradation of Incretins and Modulation of Blood Glucose Levels by Periodontopathic Bacterial Dipeptidyl Peptidase 4. Infection and Immunity, 2017, 85, .	2.2	25
11	Bacterial protease uses distinct thermodynamic signatures for substrate recognition. Scientific Reports, 2017, 7, 2848.	3.3	14
12	Dominant prevalence of Porphyromonas gingivalis fimA types I and IV in healthy Japanese children. Journal of Dental Sciences, 2017, 12, 213-219.	2.5	5
13	Skp2 Regulates the Expression of MMP-2 and MMP-9, and Enhances the Invasion Potential of Oral Squamous Cell Carcinoma. Pathology and Oncology Research, 2016, 22, 625-632.	1.9	25
14	Exopeptidases and gingipains in Porphyromonas gingivalis as prerequisites for its amino acid metabolism. Japanese Dental Science Review, 2016, 52, 22-29.	5.1	25
15	A Porphyromonas gingivalis Periplasmic Novel Exopeptidase, Acylpeptidyl Oligopeptidase, Releases N-Acylated Di- and Tripeptides from Oligopeptides. Journal of Biological Chemistry, 2016, 291, 5913-5925.	3.4	16
16	A bone substitute with high affinity for vitamin Dâ€binding protein―relationship with niche of osteoclasts. Journal of Cellular and Molecular Medicine, 2014, 18, 170-180.	3.6	16
17	Identification and Characterization of Prokaryotic Dipeptidyl-peptidase 5 from Porphyromonas gingivalis. Journal of Biological Chemistry, 2014, 289, 5436-5448.	3.4	34
18	Co-overexpression of cortactin and CRKII increases migration and invasive potential in oral squamous cell carcinoma. Journal of Oral and Maxillofacial Surgery, Medicine, and Pathology, 2014, 26, 14-21.	0.3	0

#	Article	IF	CITATIONS
19	Identification of Dipeptidyl-Peptidase (DPP)5 and DPP7 in Porphyromonas endodontalis, Distinct from Those in Porphyromonas gingivalis. PLoS ONE, 2014, 9, e114221.	2.5	9
20	Discrimination based on Gly and Arg/Ser at position 673 between dipeptidyl-peptidase (DPP) 7 and DPP11, widely distributed DPPs in pathogenic and environmental gram-negative bacteria. Biochimie, 2013, 95, 824-832.	2.6	23
21	Phenylalanine 664 of dipeptidyl peptidase (DPP) 7 and Phenylalanine 671 of DPP11 mediate preference for P2â€position hydrophobic residues of a substrate. FEBS Open Bio, 2013, 3, 177-183.	2.3	19
22	Involvement of geranylgeranylation of Rho and Rac GTPases in adipogenic and RANKL expression, which was inhibited by simvastatin. Cell Biochemistry and Function, 2013, 31, 652-659.	2.9	11
23	Overexpression of CRKII increases migration and invasive potential in oral squamous cell carcinoma. Cancer Letters, 2011, 303, 84-91.	7.2	31
24	Asp- and Glu-specific Novel Dipeptidyl Peptidase 11 of Porphyromonas gingivalis Ensures Utilization of Proteinaceous Energy Sources. Journal of Biological Chemistry, 2011, 286, 38115-38127.	3.4	38
25	Overexpression of Cortactin Increases Invasion Potential in Oral Squamous Cell Carcinoma. Pathology and Oncology Research, 2010, 16, 523-531.	1.9	45
26	Amino acid residues modulating the activities of staphylococcal glutamyl endopeptidases. Biological Chemistry, 2010, 391, 1221-32.	2.5	9
27	Determination of three amino acids causing alteration of proteolytic activities of staphylococcal glutamyl endopeptidases. Biological Chemistry, 2009, 390, 277-285.	2.5	7
28	Effects of fosfomycin on Shiga toxin-producing Escherichia coli: quantification of copy numbers of Shiga toxin-encoding genes and their expression levels using real-time PCR. Journal of Medical Microbiology, 2009, 58, 971-973.	1.8	14
29	Single Nucleotide Polymorphism that Accompanies a Missense Mutation (Gln488His) Impedes the Dimerization of Hsp90. Protein Journal, 2009, 28, 24-28.	1.6	6
30	Simvastatin suppresses the differentiation of C2C12 myoblast cells via a Rac pathway. Journal of Muscle Research and Cell Motility, 2008, 29, 127-134.	2.0	21
31	Substitution of only two residues of human $Hsp90\hat{l}\pm causes$ impeded dimerization of $Hsp90\hat{l}^2$. Cell Stress and Chaperones, 2008, 13, 97-104.	2.9	11
32	An Escherichia coli expression system for glutamyl endopeptidases optimized by complete suppression of autodegradation. Analytical Biochemistry, 2008, 381, 74-80.	2.4	8
33	Characterization of the glutamyl endopeptidase from <i>Staphylococcus aureus</i> expressed in <i>Escherichia coli</i> . FEBS Journal, 2008, 275, 573-587.	4.7	24
34	Homologous and heterologous expression and maturation processing of extracellular glutamyl endopeptidase of <i>Staphylococcus epidermidis</i> . Biological Chemistry, 2008, 389, 1209-1217.	2.5	13
35	Occurrence of staphylococci in the oral cavities of healthy adults and nasal–oral trafficking of the bacteria. Journal of Medical Microbiology, 2008, 57, 95-99.	1.8	147
36	A Disulfide Bridge Mediated by Cysteine 574 Is Formed in the Dimer of the 70-kDa Heat Shock Protein. Journal of Biochemistry, 2006, 139, 677-687.	1.7	15

#	Article	IF	Citations
37	Identification of the pentapeptide constituting a dominant epitope common to all eukaryotic heat shock protein 90 molecular chaperones. Cell Stress and Chaperones, 2005, 10, 296.	2.9	9
38	Two forms of apatite deposited during mineralization of the hen tendon. Matrix Biology, 2005, 24, 239-244.	3.6	5
39	A Comprehensive Study on the Immunological Reactivity of the Hsp90 Molecular Chaperone. Journal of Biochemistry, 2004, 136, 711-722.	1.7	10
40	The Region Adjacent to the Highly Immunogenic Site and Shielded by the Middle Domain Is Responsible for Self-Oligomerization/Client Binding of the HSP90 Molecular Chaperoneâ€. Biochemistry, 2004, 43, 7628-7636.	2.5	5
41	Interaction of Neuropeptide Y and Hsp90 through a Novel Peptide Binding Regionâ€. Biochemistry, 2003, 42, 12972-12980.	2.5	8
42	Antisense Oligonucleotide against Collagen-Specific Molecular Chaperone 47-kDa Heat Shock Protein Suppresses Scar Formation in Rat Wounds. Plastic and Reconstructive Surgery, 2003, 111, 1980-1987.	1.4	28
43	Interaction between the N-terminal and Middle Regions Is Essential for the in Vivo Function of HSP90 Molecular Chaperone. Journal of Biological Chemistry, 2002, 277, 34959-34966.	3.4	20
44	A hydrophobic segment within the C-terminal domain is essential for both client-binding and dimer formation of the HSP90-family molecular chaperone. FEBS Journal, 2002, 270, 146-154.	0.2	39
45	Substrate-binding characteristics of proteins in the 90ÂkDa heat shock protein family. Biochemical Journal, 2001, 354, 663.	3.7	23
46	Substrate-binding characteristics of proteins in the 90kDa heat shock protein family. Biochemical Journal, 2001, 354, 663-670.	3.7	36
47	Domain-domain interactions of HtpG, anEscherichia colihomologue of eukaryotic HSP90 molecular chaperone. FEBS Journal, 2001, 268, 5258-5269.	0.2	10
48	Liberation of the intramolecular interaction as the mechanism of heat-induced activation of HSP90 molecular chaperone. FEBS Journal, 2001, 268, 5270-5277.	0.2	12
49	Mechanism of Dimer Formation of the 90-kDa Heat-Shock Protein. FEBS Journal, 1995, 233, 1-8.	0.2	156
50	Dimerization characteristics of the DNA- and steroid-binding domains of the androgen receptor. Journal of Steroid Biochemistry and Molecular Biology, 1994, 50, 225-233.	2.5	40
51	Cysteine protease activity of streptococcal pyrogenic exotoxin B. Canadian Journal of Microbiology, 1994, 40, 930-936.	1.7	44
52	Association of the 90-kDa heat shock protein does not affect the ligand-binding ability of androgen receptor. Journal of Steroid Biochemistry and Molecular Biology, 1992, 42, 803-812.	2.5	41
53	The Mr 90,000 Heat Shock Protein-Free Androgen Receptor Has a High Affinity for Steroid, in Contrast to the Glucocorticoid Receptor 1. Journal of Biochemistry, 1991, 109, 113-119.	1.7	11
54	The steroid-binding properties of recombinant glucocorticoid receptor: A putative role for heat shock protein hsp90. Journal of Steroid Biochemistry and Molecular Biology, 1990, 37, 481-490.	2.5	33

#	Article	IF	CITATIONS
55	Stability and Transformation of the Glucocorticoid Receptor under Acidic Conditions 1. Journal of Biochemistry, 1988, 103, 920-927.	1.7	3
56	Purification and Characterization of a Nonhormone-Binding Component of the Nontransformed Glucocorticoid Receptor from Rat Liver1. Journal of Biochemistry, 1987, 102, 513-523.	1.7	26
57	Heterogeneity of molybdate-stabilized, nontransformed glucocorticoid receptor from rat liver. Biochemical and Biophysical Research Communications, 1985, 131, 1139-1145.	2.1	9
58	Activation of the rat liver androgen-receptor complex. Biochemical and Biophysical Research Communications, 1984, 120, 953-958.	2.1	10